×
27.05.2013
216.012.43ca

СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение предназначено для повышения качества листов и исключения загрязнения окружающей среды при обработке давлением специальных магниевых сплавов, легированных высокотоксичными легкоиспаряющимися элементами или образующими при нагреве и последующей деформации опасные для здоровья оксиды, и может быть использовано при производстве листов для анодов электрохимических источников тока. Способ включает помещение круглого слитка в трубную оболочку, нагрев заготовки и ее последующие горячую и окончательную теплую прокатки до требуемой толщины листа. Исключение разрывов, приваривания оболочки, снижение разнотолщинности и вероятности распространения загрязнения обеспечивается за счет того, что выбор алюминиевых сплавов, используемых в качестве материала оболочки, диаметр и толщина стенки оболочки, режимы нагрева валков и заготовки, а также режим обжатий и схема прокатки заготовки строго регламентированы. 5 ил.
Основные результаты: Способ производства листов из сплавов на основе магния, легированных легкоиспаряющимися токсичными элементами или образующими при нагреве и деформации опасные для окружающей среды оксиды, включающий предварительное помещение круглого слитка в оболочку в виде прессованной трубы из алюминиевого сплава без герметизации, горячую прокатку заготовки поперек оси литья слитка при температуре 380÷420°С в начальной стадии, нагрев предварительно деформированной заготовки и в заключительной стадии ее окончательную теплую прокатку с промежуточными нагревами, отличающийся тем, что слиток помещают в трубу с внутренним диаметром 1,1÷1,3 диаметра слитка и толщиной стенки 0,028÷0,040 диаметра слитка, при этом в качестве материала трубы используют алюминиевые сплавы, сопротивление деформации которых составляет 0,86÷1,15 сопротивления деформации магниевого сплава, в начальной стадии горячую прокатку поперек оси литья слитка проводят после нагрева заготовки в течение 3÷15 ч на валках, нагретых до температуры 100÷120°С с повышением частных обжатий от 17 до 25% до достижения суммарной степени деформации не менее 50%, а заключительную стадию прокатки до требуемой толщины осуществляют после кантовки полураската, с частными обжатиями 25÷40 % при температуре конца прокатки не менее 250°С.
Реферат Свернуть Развернуть

Предлагаемое изобретение относится к области обработки давлением специальных магниевых сплавов, легированных высокотоксичными легкоиспаряющимися элементами или образующими при нагреве и последующей деформации опасные для здоровья оксиды, и может быть использовано при производстве листов для анодов электрохимических источников тока.

Известен способ производства листов из малолегированных магниевых сплавов, в том числе сплава МА2-1 (см. Магниевые сплавы для производства полуфабрикатов. М.: Металлургия, 1973. - с.73-130), которые используются в качестве материала анодов в электрохимических источниках тока. Основным недостатком этого метода является относительно низкий уровень электрохимических свойств получаемых анодов, которые не удовлетворяют повышенным требованиям потребителей. В связи с этим были разработаны новые специальные магниевые сплавы. При этом повышение электрохимических свойств этих сплавов достигается легированием такими токсичными элементами, как ртуть, таллий, свинец и другими, относящимися к 1 классу опасности, а для предотвращения загрязнения окружающей среды экологически опасными выделениями при их обработке используют метод защитного плакирования.

Так, известен способ производства листов из специальных сплавов на основе магния, легированных высокотоксичными элементами, принятый за прототип, включающий помещение слитка в трубу из алюминиевого сплава и последующие горячую и окончательную теплую прокатки заготовки на нагретых валках до требуемой толщины листа (см. Патент RU 2253521). При этом в качестве материала трубы используют алюминиевые сплавы марки АД31 или ABB. Круглый слиток помещают в прессованную трубу с зазором от 0,5 до 2 мм, длина которой превышает длину слитка на (10÷30) % с каждой стороны. Круглый слиток после зачеканки концов трубы нагревают до температуры (380÷420)°С и подвергают предварительной горячей прокатке на нагретых до температуры (140÷160)°С валках за несколько проходов до требуемой толщины подката. Окончательную теплую прокатку подката на листы требуемой толщины осуществляют с нагревом заготовки до температуры (360÷390)°С с выдержкой в печи от 30 до 60 минут на валках, нагретых до температуры (120÷140)°С с обжатиями (10÷30) % за проход. В процессе теплой прокатки проводят промежуточные нагревы заготовки. При этом охлаждение заготовки при теплой прокатке обеспечивают не ниже 320°С.

Как показал опыт серийного производства листов из указанных специальных магниевых сплавов известным способом, ему присущ целый ряд серьезных недостатков, в том числе:

- разрывы с отслоением оболочки, приварка оболочки к валкам при горячей прокатке с аварийной остановкой стана, ограниченные возможности производства по выбору материала серийно выпускаемых прессованных труб из алюминиевых сплавов, используемых в качестве оболочки. Неравномерность распределения плакировки, приводящая к оголению листов основного металла от защитной плакировки или ее повышенной толщине;

- повышенная разнотолщинность получаемых анодных листов из специальных магниевых сплавов и низкое качество их поверхности после удаления плакировки методом химического травления;

- низкий выход годного;

- высокая трудоемкость производства листов и их последующей обработки при изготовлении источников тока.

Задачей предлагаемого изобретения является создание технологии получения высококачественных листов из специальных магниевых сплавов и гарантирующей отсутствие загрязнения окружающей среды токсичными аэрозолями, оксидами и другими соединениями, содержащими ртуть, таллий, свинец.

Указанная цель достигается предлагаемым способом производства листов из специальных магниевых сплавов для электрохимических источников тока, включающим помещение слитка из специального магниевого сплава в оболочку в виде прессованной трубы, зачеканенной с двух сторон, отличающимся от прототипа тем, что используется для этой цели труба с внутренним диаметром (1,1÷1,3) диаметра слитка и толщиной стенки (0,028÷0,040) диаметра слитка, при этом в качестве материала трубы используют алюминиевые сплавы, сопротивление деформации которых при термомеханических параметрах горячей прокатки заготовки составляет (0,86÷1,15) сопротивления деформации специального магниевого сплава, а горячую прокатку проводят поперек оси литья слитка после нагрева заготовки в течение (3÷15) часов на валках, нагретых до температуры (100÷120)°С, с повышением частных обжатий с 17 до 25% в начальной стадии процесса до достижения суммарной степени деформации не менее 50%, а заключительную стадию процесса до требуемой толщины осуществляют после кантовки полураската с частными обжатиями (25÷40) % при температуре конца прокатки не менее 250°С.

Примеры

На фиг.1, 2, 3, 4 и 5 представлены таблицы с экспериментальными данными по горячей прокатке заготовок на подкат известным и предлагаемым способом с использованием в качестве материала оболочки прессованных труб различного диаметра и толщиной стенки, изготовленных из алюминия и малолегированных алюминиевых сплавов, при различных температурах нагрева валков, продолжительности нагрева заготовок, режимах обжатий и схемах горячей прокатки.

В качестве исходной заготовки использовали стандартные слитки сплавов системы Mg-Hg и Mg-Tl диаметром 90±3 и 100±3 мм. После зачеканки слитков в трубную оболочку заготовки нагревали до температуры (400÷420)°С и подвергали горячей прокатке на подкат требуемой толщины.

Анализ результатов экспериментов по изучению влияния соотношения внутреннего диаметра трубной оболочки и диаметра слитка на качество горячекатаного подката, приведенных на фиг.1, показал, что оптимальной величиной зазора между трубной оболочкой и слитком основного металла (специального магниевого сплава) достигается при использовании труб, внутренний диаметр которых составляет (1,1÷1,3) диаметра слитка (фиг.1, п.2, 3, 4, 6, 8). При меньшем значении этого показателя наблюдается разрушение оболочки (фиг.1, п.1, 7), а при его превышении не происходит полного заполнения внутреннего объема трубы основным металлом, что приводит к необоснованно повышенному расходу материала оболочки (фиг.1, п.5, 10).

При изучении влияния температуры нагрева валков на процесс горячей прокатки и качество горячекатаного подката было установлено, что с учетом невозможности использования смазочно-охлаждающей жидкости наибольший эффект достигается, если температура валков в процессе горячей прокатки находится в пределах от 100 до 120°С (фиг.2, п.5, 6, 7). При температуре валков менее 100°С происходит более резкое снижение температуры прокатываемого металла, особенно в заключительной стадии процесса, что приводит к снижению его пластичности и, как следствие, к образованию трещин и разрывов на боковых кромках подката (фиг.2, п.8). При температуре валков более 120°С начинается процесс налипания металла оболочки на валки («заалюминивание» валков), приводящий к ухудшению качества поверхности получаемого подката (фиг.2, п.3, 4), а при температуре валков 140°С отмечаются случаи приварки оболочки к рабочему валку с аварийной остановкой прокатного стана (фиг.2, п.1, 2).

Анализ экспериментальных данных, полученных при изучении влияния материала трубы на качество горячекатаного подката и готовых анодных листов (фиг.3), позволил установить, что если сопротивление деформации алюминиевого сплава составляет (0,86÷1,15) сопротивления деформации специального магниевого сплава, то он может успешно использоваться в качестве материала оболочки (фиг.3, п.1, 2, 4, 5, 8, 9, 10, 11). Этому требованию, помимо сплава АД31, отвечают сплавы АД, АМц и АМг. При меньших значениях этого отношения наблюдается повышенное утонение алюминиевой плакировки с оголением основного металла (фиг.3, п.3), а при больших значениях - разрушение алюминиевой плакировки с образованием поверхностных трещин вследствие высоких растягивающих напряжений, возникающих в очаге деформации (фиг.3, п.6). Эксперименты по горячей прокатке заготовок на подкат и окончательной теплой прокатке на листы позволили установить, что требования к общей толщине плакирующего и интерметаллидного слоев (≤0,15 мм) с каждой стороны листа выполняются, если отношение толщины стенки трубы к диаметру слитка составляет (0,028÷0,040) (фиг.3, п.2, 4, 5, 9, 10, 11). При меньшем значении этого показателя происходит утонение плакировки с нарушением ее сплошности (фиг.3, п.7, 12), что недопустимо по требованиям охраны труда. Превышение этого значения приводит к увеличению толщины плакировки, не отвечающей установленным к ней требованиям, что сопряжено с повышением трудоемкости ее последующего удаления, нерациональным расходом материала оболочки, ухудшением качества поверхности и повышенной разнотолщинностью получаемых анодных листов (фиг.3, п.1, 8).

Известный способ предусматривает строгое ограничение только температуры нагрева заготовки перед горячей прокаткой, но не регламентирует требования к продолжительности нагрева. Как показали проведенные эксперименты (фиг.4), оптимальное значение продолжительности нагрева заготовок со слитками диаметром 90 и 100 мм составляет от 3 до 15 часов (фиг.4, п.2÷6).

При меньшей продолжительности нагрева не обеспечивается равномерный прогрев металла по всему объему слитка, следствием чего является образование грубых трещин в начальной стадии прокатки заготовок (фиг.4, п.1). Превышение указанного максимального значения продолжительности нагрева также недопустимо из-за того, что при длительном нагреве за счет возгонки и окисления происходит обеднение легкоиспаряющимися легирующими элементами поверхностных слоев слитков и получаемых из них анодных листов, что приводит к существенному снижению уровня их электрохимических свойств (фиг.4, п.7) или к браку по локальным неприварам плакировки (фиг.4, п.8).

В таблице на фиг.5 представлены результаты экспериментов по опробованию различных режимов обжатий и схем горячей прокатки заготовок. Принципиальной особенностью предлагаемого способа является применение интенсивных режимов обжатий на всех стадиях процесса прокатки в сочетании с обязательным изменением направления прокатки относительно оси литья слитка, которое обеспечивается кантовкой полураската при достижении строго ограниченной степени деформации.

Наиболее высокую эффективность по трудоемкости, энергозатратам и выходу годного обеспечивает процесс получения горячекатаного подката (фиг.5, п.8, 9, 13, 14), при котором прокатку заготовок в начальной стадии проводят поперек оси литья слитка с повышением частных обжатий с 17 до 25% до достижения суммарной степени деформации не менее 50%, а заключительную стадию процесса до требуемой толщины осуществляют после кантовки полураската с частными обжатиями (25÷40) % при температуре конца прокатки не менее 250°С.

Превышение указанных режимов обжатий в начальной (фиг.5, п.10) или конечной (фиг.5, п.11) стадиях прокатки не может быть рекомендовано из-за снижения выхода годного при одновременном увеличении трудоемкости, связанных с необходимостью проведения дополнительной операции обрезки боковых кромок подката для удаления трещин. Не может быть рекомендовано и проведение кантовки полураската из-за недостаточной проработки литой структуры на более ранней стадии процесса прокатки с суммарной степенью деформации менее 50% (фиг.5, п.6, 12), также ведущее к снижению выхода годного и увеличению трудоемкости.

Прокатка заготовок без кантовки с применением менее интенсивных режимов обжатий (фиг.5, п.1, 3) приводит к резкому увеличению трудоемкости и энергозатрат, а с повышением частных обжатий за проход до (20÷25) % (фиг.5, п.2, 4) - к значительному снижению выхода годного.

При температуре конца прокатки менее 250ºС из-за резкого снижения пластичности специальных магниевых сплавов происходит образование трещин, что приводит к уменьшению выхода годного и повышению трудоемкости процесса (фиг.5, п.2, 4, 15).

Таким образом, представленные данные доказывают, что технологический процесс прокатки анодных листов из специальных магниевых сплавов, плакированных алюминиевыми сплавами, с использованием заявляемых параметров, является более эффективным по сравнению с известным способом как по технико-экономическим показателям, так и по качеству получаемых листов.

Способ производства листов из сплавов на основе магния, легированных легкоиспаряющимися токсичными элементами или образующими при нагреве и деформации опасные для окружающей среды оксиды, включающий предварительное помещение круглого слитка в оболочку в виде прессованной трубы из алюминиевого сплава без герметизации, горячую прокатку заготовки поперек оси литья слитка при температуре 380÷420°С в начальной стадии, нагрев предварительно деформированной заготовки и в заключительной стадии ее окончательную теплую прокатку с промежуточными нагревами, отличающийся тем, что слиток помещают в трубу с внутренним диаметром 1,1÷1,3 диаметра слитка и толщиной стенки 0,028÷0,040 диаметра слитка, при этом в качестве материала трубы используют алюминиевые сплавы, сопротивление деформации которых составляет 0,86÷1,15 сопротивления деформации магниевого сплава, в начальной стадии горячую прокатку поперек оси литья слитка проводят после нагрева заготовки в течение 3÷15 ч на валках, нагретых до температуры 100÷120°С с повышением частных обжатий от 17 до 25% до достижения суммарной степени деформации не менее 50%, а заключительную стадию прокатки до требуемой толщины осуществляют после кантовки полураската, с частными обжатиями 25÷40 % при температуре конца прокатки не менее 250°С.
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВ ИЗ СПЕЦИАЛЬНЫХ СПЛАВОВ НА ОСНОВЕ МАГНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА
Источник поступления информации: Роспатент

Showing 1-10 of 65 items.
20.02.2013
№216.012.2651

Штамповый блок для изотермического деформирования

Изобретение относится к обработке металлов давлением и может быть использовано при получении штампованных заготовок в изотермических или близких к ним условиях. Штамповый блок содержит верхний и нижний штампы с боковыми нагревателями и изоляцией, смонтированные в кожухах в рабочем пространстве...
Тип: Изобретение
Номер охранного документа: 0002475329
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2658

Способ получения металлического порошка методом центробежного распыления

Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. Литую заготовку плавят плазменной струей, направленной на ее торец. Центробежное распыление расплава осуществляют посредством вращающегося диска с центральным отверстием, через...
Тип: Изобретение
Номер охранного документа: 0002475336
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.2f66

Способ вакуумной термической дегазации гранул жаропрочных сплавов в подвижном слое

Изобретение относится к порошковой металлургии, в частности к способу термической дегазации гранул жаропрочных сплавов и подготовке их к компактированию. Камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст. и осуществляют дозированную подачу гранул на наклонную поверхность, нагретую...
Тип: Изобретение
Номер охранного документа: 0002477669
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2f67

Способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов

Изобретение относится к порошковой металлургии, а именно к производству изделий из гранулируемых жаропрочных никелевых сплавов горячим изостатическим прессованием. Гранулами заполняют капсулу и проводят горячее изостатическое прессование с получением заготовки в оболочке. Оболочку удаляют по...
Тип: Изобретение
Номер охранного документа: 0002477670
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30bb

Способ изготовления прутковой заготовки

Изобретение относится к способу изготовления прутковой заготовки из металла, используемой для дальнейшего передела. Способ включает установку в контейнере пресса предварительно нагретых прутковой заготовки, технологической шайбы из металла и прессшайбы, подпрессовку и прессование заготовки....
Тип: Изобретение
Номер охранного документа: 0002478013
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.30c4

Способ производства порошка из титановых сплавов

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона...
Тип: Изобретение
Номер охранного документа: 0002478022
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.35ff

Способ производства слитков деформируемых магниевых сплавов

Изобретение относится к области металлургии. Индукционную плавку шихтовых материалов ведут в стальном тигле в газовой среде, состоящей из смеси аргона и фреона 12 в соотношении 4:(1-2). Расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40...
Тип: Изобретение
Номер охранного документа: 0002479376
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.43d7

Способ получения сварных конструкций из литых деталей алюминиевых сплавов

Изобретение может быть использовано для получения листосварных конструкций авиационного назначения. Способ включает обработку свариваемых кромок литых деталей перед сваркой путем осуществления сварки трением с перемешиванием. Затем механически обрабатывают кромки свариваемых деталей. При этом в...
Тип: Изобретение
Номер охранного документа: 0002482944
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.50c4

Способ внепечного модифицирования алюминиевых сплавов

Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества при изготовлении изделий атомной, авиакосмической и автомобильной промышленности. Способ включает подачу расплавленного металла из миксера в...
Тип: Изобретение
Номер охранного документа: 0002486269
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5381

Способ изготовления труб из труднодеформируемых металлов

Использование способа изготовления труб из труднодеформируемых металлов предусматривает получение бесшовной трубы методом горячего экспандирования и прессования предварительно сверленой заготовки за один рабочий цикл пресса и включает нагрев заготовки, нанесение технологической смазки, загрузку...
Тип: Изобретение
Номер охранного документа: 0002486980
Дата охранного документа: 10.07.2013
Showing 1-10 of 44 items.
20.02.2013
№216.012.2651

Штамповый блок для изотермического деформирования

Изобретение относится к обработке металлов давлением и может быть использовано при получении штампованных заготовок в изотермических или близких к ним условиях. Штамповый блок содержит верхний и нижний штампы с боковыми нагревателями и изоляцией, смонтированные в кожухах в рабочем пространстве...
Тип: Изобретение
Номер охранного документа: 0002475329
Дата охранного документа: 20.02.2013
20.02.2013
№216.012.2658

Способ получения металлического порошка методом центробежного распыления

Изобретение относится к порошковой металлургии, в частности к способам непрерывного получения металлического порошка. Литую заготовку плавят плазменной струей, направленной на ее торец. Центробежное распыление расплава осуществляют посредством вращающегося диска с центральным отверстием, через...
Тип: Изобретение
Номер охранного документа: 0002475336
Дата охранного документа: 20.02.2013
20.03.2013
№216.012.2f66

Способ вакуумной термической дегазации гранул жаропрочных сплавов в подвижном слое

Изобретение относится к порошковой металлургии, в частности к способу термической дегазации гранул жаропрочных сплавов и подготовке их к компактированию. Камеру дегазации вакуумируют до давления не более 1·10 мм рт.ст. и осуществляют дозированную подачу гранул на наклонную поверхность, нагретую...
Тип: Изобретение
Номер охранного документа: 0002477669
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2f67

Способ изготовления изделий из гранулируемых жаропрочных никелевых сплавов

Изобретение относится к порошковой металлургии, а именно к производству изделий из гранулируемых жаропрочных никелевых сплавов горячим изостатическим прессованием. Гранулами заполняют капсулу и проводят горячее изостатическое прессование с получением заготовки в оболочке. Оболочку удаляют по...
Тип: Изобретение
Номер охранного документа: 0002477670
Дата охранного документа: 20.03.2013
27.03.2013
№216.012.30bb

Способ изготовления прутковой заготовки

Изобретение относится к способу изготовления прутковой заготовки из металла, используемой для дальнейшего передела. Способ включает установку в контейнере пресса предварительно нагретых прутковой заготовки, технологической шайбы из металла и прессшайбы, подпрессовку и прессование заготовки....
Тип: Изобретение
Номер охранного документа: 0002478013
Дата охранного документа: 27.03.2013
27.03.2013
№216.012.30c4

Способ производства порошка из титановых сплавов

Изобретение относится к порошковой металлургии, в частности к получению порошка титановых сплавов. Торец цилиндрической вращающейся заготовки расплавляют потоком плазмы в среде инертного газа, при этом применяют дополнительное охлаждение камеры с помощью отдельной, не зависимой от плазмотрона...
Тип: Изобретение
Номер охранного документа: 0002478022
Дата охранного документа: 27.03.2013
20.04.2013
№216.012.35ff

Способ производства слитков деформируемых магниевых сплавов

Изобретение относится к области металлургии. Индукционную плавку шихтовых материалов ведут в стальном тигле в газовой среде, состоящей из смеси аргона и фреона 12 в соотношении 4:(1-2). Расплав перед разливкой нагревают до температуры 800-830°C и выдерживают при этой температуре в течение 20-40...
Тип: Изобретение
Номер охранного документа: 0002479376
Дата охранного документа: 20.04.2013
27.05.2013
№216.012.43d7

Способ получения сварных конструкций из литых деталей алюминиевых сплавов

Изобретение может быть использовано для получения листосварных конструкций авиационного назначения. Способ включает обработку свариваемых кромок литых деталей перед сваркой путем осуществления сварки трением с перемешиванием. Затем механически обрабатывают кромки свариваемых деталей. При этом в...
Тип: Изобретение
Номер охранного документа: 0002482944
Дата охранного документа: 27.05.2013
27.06.2013
№216.012.50c4

Способ внепечного модифицирования алюминиевых сплавов

Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества при изготовлении изделий атомной, авиакосмической и автомобильной промышленности. Способ включает подачу расплавленного металла из миксера в...
Тип: Изобретение
Номер охранного документа: 0002486269
Дата охранного документа: 27.06.2013
10.07.2013
№216.012.5381

Способ изготовления труб из труднодеформируемых металлов

Использование способа изготовления труб из труднодеформируемых металлов предусматривает получение бесшовной трубы методом горячего экспандирования и прессования предварительно сверленой заготовки за один рабочий цикл пресса и включает нагрев заготовки, нанесение технологической смазки, загрузку...
Тип: Изобретение
Номер охранного документа: 0002486980
Дата охранного документа: 10.07.2013
+ добавить свой РИД