×
20.05.2013
216.012.41ff

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД

Вид РИД

Изобретение

№ охранного документа
0002482465
Дата охранного документа
20.05.2013
Аннотация: Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п. Образец мерзлых пород в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента. По окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и путем анализа полученного компьютерного томографического изображения определяют пространственное распределение и концентрацию ледяных и/или газогидратных включений, а также открытую и закрытую пористость. Техническим результатом изобретения является обеспечение визуализации ледяных и/или гидратных образований в поровом пространстве мерзлых пород за счет улучшения их контрастности, что позволяет производить оценки пространственного распределения и концентрирования льда и газовых гидратов в поровом пространстве пород, а также оценку открытой и закрытой пористости с помощью анализа рентгеновских изображений. 10 з.п. ф-лы, 4 ил.

Изобретение относится к области исследования образцов мерзлых пород и может быть использовано для изучения пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений, открытой или закрытой пористости и т.п.

Рентгеновская микротомография, позволяющая получать 3-мерные изображения внутренней структуры образцов горных пород и обладающая высоким разрешением от 1 мкм/пиксель и выше, широко используется для неразрушающего контроля внутренних характеристик материала и применяется в медицине для функциональной диагностики. В последнее время рентгеновская микротомография находит применение и для определения свойств образцов пород в нефтяной и газовой промышленности.

В основе метода рентгеновской микротомографии лежит реконструкция пространственного распределения линейного коэффициента ослабления (ЛКО) рентгеновского излучения в тонких слоях исследуемого образца с помощью компьютерной обработки проекции рентгеновских лучей в различных направлениях вдоль исследуемого слоя.

Величина ЛКО в каждом материале зависит от химического состава, плотности вещества и от энергии излучения

µ=µmρ,

µm - массовый коэффициент затухания под воздействием рентгеновского излучения (см2/г), ρ - плотность (г/см3).

Из уровня техники известно использование ренгеновской томографии для исследования образцов мерзлых и гидратосодержащих пород. Как правило, рентгенотомографические исследования используются для изучение макроледяных и газогидратных включений (линз, прослоев, порфиров) и в целом криогидратной текстуры. Так, с помощью рентгеновской томографии изучалось криогенное строение кернов мерзлых глинистых пород, при этом на рентгенотомографических изображениях были видны лишь ледяные прослои, размер которых превышал 1 мм [Torrance J.K., Elliot Т., Martin R., Heck R.J. X-ray computed tomography of frozen soil. Cold Regions Science and Technology 53, 2008, p.75-82]. При исследовании гидратосодержащих пород с помощью рентгеновской томографии были зафиксированы газогидратные прослои и трещины, которые образовались при диссоциации газогидратных линз [Kneafsey T.J, Lu Н., Winters W., Boswell R., Hunter R., Collett T.S. Examination of core samples from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Effects of retrieval and preservation. Marine and Petroleum Geology 28, 2011, p.381-393].

Однако эти исследования не позволяют идентифицировать поровые льдо и гидратные образования в силу их низкой контрастности.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении визуализации ледяных и/или гидратных образований в поровом пространстве мерзлых пород за счет улучшения их контрастности, что позволяет производить оценки пространственного распределения и концентрирования льда и газовых гидратов в поровом пространстве пород, а также оценку открытой и закрытой пористости с помощью анализа рентгеновских изображений.

В соответствии с заявленным способом образец мерзлых пород в условиях отрицательной температуры приводят в контакт с замороженным раствором рентгеноконтрастного агента, по окончании насыщения образца проводят компьютерную рентгеновскую микротомографию образца при отрицательных температурах и определяют пространственное распределение и концентрацию ледяных и/или газогидратных включений, а также открытую и закрытую пористость путем анализа полученного компьютерного томографического изображения.

В качестве рентгеноконтрастного агента используют водорастворимое соединение, в состав которого входит химический элемент, обладающий высокой степень ослабления рентгеновского излучения.

В качестве химического элемента, обладающего способностью ослаблять рентгеновское излучение, используют элемент с большим атомным весом, а водорастворимое соединение представляет собой его соль или оксид.

В качестве элемента с большим атомным весом может быть использован тяжелый металл из группы Pb, Ba, Sr, Ra и др.

Контакт образца с замороженным раствором рентгеноконтрастного агента осуществляют при температуре ниже температуры фазового перехода лед - вода, то есть температуры плавления льда в образце, предпочтительно от -7°C до -10°C.

Предварительно исследуемый образец мерзлых пород и замороженный раствор рентгеноконтрастного агента могут быть выдержаны при температуре ниже температуры плавления льда в образце, предпочтительно от -7°C до -10°C, до стабилизации температуры по образцу.

Компьютерную рентгеновскую микротомографию образца проводят в услових отрицательной температуры, во избежания плавления льда/газогидрата в поровом пространстве, при температуре ниже температуры плавления льда в образце, предпочтительно, при температуре -7°C до -10°C.

Изобретение поясняется чертежами, где на фиг.1а приведено рентгеновское изображение, полученное для образца мерзлых пород без применения рентгеноконтрастного агента, на фиг.1б - рентгеновское изображение, полученное для образца мерзлых пород с применением рентгеноконтрастного агента, на фиг.2 - характеристическая гистограмма серой шкалы для льдосодержащего образца с применением и без применения рентгеноконтрасного агента, на фиг.3 - распределение пористости по высоте образца для двух случаев: пористости матрицы и эффективной пористости (с учетом содержания льда в порах), на фиг.4 - распределение размера пор для двух случаев: пористости матрицы и эффективной пористости (с учетом содержания льда в порах).

Заявленное изобретение основано на эффекте диффузии ионов водорастворимых соединений элементов, обладающих способностью ослаблять рентгеновское излучение (например, солей тяжелых металлов), по твердой фазе льда/гидрата в поровом пространстве пород при низких температурах, что обеспечивает улучшение контраста при проведении рентгеновской микротомографии при низких (отрицательных) температурах льда/гидрата.

Подходящими рентгеноконтрастными агентами являются водорастворимые соединения, содержащие элементы с большим атомным номером, например соли тяжелых металлов (Pb, Ba, Sr, Ra и т.д.). В качестве соли тяжелого металла выбирают растворимую соль в соответствии с таблицей растворимости неорганических веществ в воде. Такими солями могут быть: Pb(NO3)2, BaCl2 и др.

В примере реализации изобретения для улучшения рентгеновского контраста льда/газогидрата в поровом пространстве породы использовался замороженный 1% раствор Pb(NO3)2 в качестве источника ионов свинца для диффузии по твердой фазе льда/газогидрата при отрицательных температурах.

Насыщения льда солью металлов ведет, например, к понижению температуры фазового перехода лед - вода, что в свою очередь может приводить к таянию образца при температурах ниже 0°C (фазового перехода лед - вода для дистиллированной воды при нормальном давлении). С другой стороны, при понижении температуры скорость дифузии ионов в образец замедляется, что ведет к увеличению времени контакта для насыщения образца ионами. В общем случае температура при контакте образца с замороженным раствором должна быть меньше температуры фазового перехода лед - вода или газогидрат/вода в образце.

Приготовленный 1% раствор Pb(NO3)2 замораживают при температуре -15°C - -20°C, после чего замороженный раствор и исследуемый образец мерзлой породы переносят в холодильную камеру с температурой около -7°C, где они выдерживаются до стабилизации температуры. После этого образец устанавливают на замороженный раствор, т.е. осуществляют их непосредственный контакт. Образец в контакте с замороженным раствором выдерживают при изотермических условиях (температура постоянная около -7°C) в течение 7 дней. За это время происходит диффузионное насыщение образца мерзлых пород ионами тяжелого металла. По окончании насыщения контакт образца с замороженным раствором зачищается и образец мерзлых пород готов для сканирования на рентгеновском томографе при отрицательных температурах.

Проводят исследование образца с помощью низкотемпературной приставки (Cooling stage, http://www.skyscan.be/products/stages.htm) на рентгеновском микротомографе. Образцы сканировались при температуре около -10°C, чтобы избежать таяния льда в образце.

Предпочтительно, образец должен сканироваться с использованием рентгеновского микротомографа дважды, первый раз в исходном состоянии, затем после его насыщения ионами тяжелых металлов. Оба сканирования проводятся при температуре ниже плавления льда/ газогидрата в образце. Результатом сканирования в обоих случаях является 3-мерная цифровая модель керна: исходная и после насыщения ионами. В последней лед/газогидрат, находящийся в поровом пространстве, становится видимым (фиг.1) и отображается на гистограмме градаций серого в виде пика (фиг.2, стрелка). Сравнительный анализ 3-мерных цифровых моделей позволяет определить распределения льда/газогидрата в поровом пространстве, концентрацию по длине образца, распределение пор по размерам (фиг.3 и 4) и т.д.


СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД
СПОСОБ ИССЛЕДОВАНИЯ ОБРАЗЦОВ МЕРЗЛЫХ ПОРОД
Источник поступления информации: Роспатент

Showing 111-113 of 113 items.
20.05.2023
№223.018.67b5

Способ и система измерения краевого угла смачивания

Использование: для измерения краевого угла смачивания для капли флюида на поверхности образца материала в окружении другого флюида. Сущность изобретения заключается в том, что образец материала, имеющий плоскую поверхность, помещают в рентгенопрозрачную ячейку, установленную на регулируемой...
Тип: Изобретение
Номер охранного документа: 0002794567
Дата охранного документа: 21.04.2023
26.05.2023
№223.018.7002

Способ определения концентрации расклинивающего агента в жидкости гидроразрыва и способ выполнения гидроразрыва пласта

Группа изобретений относится к способу определения концентрации расклинивающего агента в жидкости гидроразрыва и способу выполнения гидроразрыва пласта. Устанавливают гидрофоны или датчики давления в трубчатом корпусе. Обеспечивают протекание жидкости гидроразрыва через трубчатый корпус....
Тип: Изобретение
Номер охранного документа: 0002796158
Дата охранного документа: 17.05.2023
16.06.2023
№223.018.7c3b

Способ временной изоляции интервала скважины, способ повторного гидроразрыва пласта и способ глушения скважины

Группа изобретений относится к нефтегазовой промышленности и может найти применение при стимулировании подземного пласта с помощью операций гидравлического разрыва пласта, в частности при временной изоляции трещин гидравлического разрыва пласта, при повторном гидравлическом разрыве пласта, а...
Тип: Изобретение
Номер охранного документа: 0002742382
Дата охранного документа: 05.02.2021
Showing 81-84 of 84 items.
09.06.2019
№219.017.7fca

Способ определения смачиваемости пористых материалов

Способ определения смачиваемости пористых материалов предусматривает размещение образца пористого материала в ячейке калориметра и обеспечение контакта образца со смачивающей жидкостью. Осуществляют постоянную регистрацию теплового потока в ячейку и на основании результатов измерения с учетом...
Тип: Изобретение
Номер охранного документа: 0002468353
Дата охранного документа: 27.11.2012
26.06.2019
№219.017.92d1

Способ получения целлюлозосодержащего геля

Изобретение относится к способам получения композиций в виде гелей, содержащих наноразмерную целлюлозу, и может быть использовано в целлюлозно-бумажной, текстильной, химической, пищевой отраслях промышленности. Способ получения целлюлозосодержащего геля, включающий кислотную и окислительную...
Тип: Изобретение
Номер охранного документа: 0002692349
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.a999

Способ добычи природного газа из газогидратной залежи

Изобретение относится к газовой промышленности, в частности, к разработке газогидратных месторождений. Способ добычи природного газа из газогидратной залежи заключается в том, что сооружают скважину на газопроницаемый газогидратный пласт, вскрывают этот пласт и периодически проводят закачку в...
Тип: Изобретение
Номер охранного документа: 0002693983
Дата охранного документа: 08.07.2019
04.11.2019
№219.017.de39

Биоразлагаемая низкотемпературная пластичная смазка и способ ее получения

Изобретение относится к экологичным (биоразлагаемым) низкотемпературным смазкам и может применяться в узлах трения машин и механизмов в условиях Крайнего Севера, при температурах окружающей среды до минус 50°С. Описанная биоразлагаемая низкотемпературная пластичная смазка содержит, % мас.:...
Тип: Изобретение
Номер охранного документа: 0002704968
Дата охранного документа: 01.11.2019
+ добавить свой РИД