×
20.05.2013
216.012.406b

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии. Широкопористый оксид алюминия в гамма-форме получают осаждением гидроксида алюминия из раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч. Пасту с влажностью 58÷66% формуют. Пасту получают смешением (66÷70)% влажного осадка гидроксида алюминия и порошка, высушенного на распылительной сушилке (30÷34)% влажного осадка гидроксида алюминия, приготовленного в виде суспензии. После формовки проводят сушку и прокаливание. Изобретение позволяет получить широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м/г, объемом пор - (0,82÷1,09) см/г и средним диаметром пор - 9,2÷11 нм. 8 ил., 8 пр., 1 табл.
Основные результаты: Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.

Изобретение относится к способу получения широкопористого оксида алюминия в γ-форме, широко используемого в химической и нефтехимической промышленности [Иванова А.С. Оксид алюминия: применение, способы получения, структура и кислотно-основные свойства. // Промышленный катализ в лекциях, 2009, №8, с.7-61] в качестве катализатора и компонента сложных катализаторов, носителя при синтезе как металлических, так и оксидных катализаторов, а также в качестве адсорбента (для обезвоживания газов и жидкостей).

Выпускаемые отечественными производителями оксиды алюминия по "алюминатной" или "сульфатной" технологии содержат значительные количества примесей, главным образом натрия и сульфат-ионов, наличие которых существенным образом снижает активность большинства катализаторов, полученных на его основе. Кроме того, отечественные образцы оксида алюминия имеют преимущественно бимодальное или полидисперсное распределение пор по размерам, тогда как для интенсификации процессов нефтепереработки, нефтехимии, а также для получения продукции специального назначения, необходима новая модификация оксидного материала - высокочистый широкопористый оксид алюминия с мономодальным распределением пор по размерам, производство которого в России отсутствует.

Активный оксид алюминия в виде γ-формы получают, как правило, термическим разложением гидроксида алюминия псевдобемитной структуры (AlOOH х n Н2О) при температуре 500-600°С, характеризующегося высокой величиной удельной поверхности (300-500) м2/г, относительно большим объемом пор (0,8-1,2) см3/г и высокой термической стабильностью.

Известно [SU 852798, C01F 7/34, 1981; CN 101332997(A), C01B 3/08, 2008], что высокочистый оксид алюминия получают по золь-гель-методу с использованием в качестве исходных предшественников алкоголятов алюминия; синтез гидроксида алюминия включает следующие стадии: гидролиза алкоголята алюминия, конденсации и образования мономеров, димеров и олигомеров. Свойства осадка можно регулировать соотношением воды и алкоксида [Gonzalez R.D., Lopez Т., Gomez R. Sol-Gel preparation of supported metal catalysts. // Catalysis Today, 1997. V.35, №3, P.293; CN 1419961 (A), B01J 19/30 2003; CN 1807246(A), B01J 21/04, 2006], изменяя величину удельной поверхности от 250 до 500 м2/г при одновременном уменьшении диаметра пор от 15 до 9 нм, формируя мономодальное распределение пор по размерам. К недостаткам метода, основанного на гидролизе алкоксидов, следует отнести специфичность исходного сырья, необходимость предотвращения контакта с окружающей средой и строго соблюдать соотношение вода/алкоксид и использовать специальное оборудование; кроме того, получаемый гидроксид и оксид алюминия имеет большую себестоимость по сравнению с методом осаждения растворов солей алюминия {Al(NO3)3, AlCl3, Al2(SO4)3, NaAlO2} водным раствором осадителя {NH4OH, NaOH, KOH, HNO3}. Показано [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110], что путем изменения рН, температуры осаждения и продолжительности «старения» (выдерживания суспензии при заданных условиях) можно варьировать фазовый состав и текстурные характеристики получаемого гидроксида и оксида алюминия.

В зависимости от рН среды ионизация Al-содержащих молекул происходит следующим образом [Иванова А.С., Пугач М.М., Мороз Э.М. и др. Влияние условий получения на физико-химические свойства гидроксидов алюминия и магния. // Изв. АН СССР, Сер.хим., 1989. №10, С.2169-2176]:

,

,

,

.

Химическая чистота получаемого гидроксида и оксида алюминия зависит от природы исходных предшественников и наиболее подходящими являются азотнокислый алюминий и водный раствор аммиака, а именно: Al(NO3)3+3NH4OH→AlOOH↓ (Al(ОН)3↓)+3NH4NO3. В зависимости от условий осаждения получаемый осадок может представлять собой либо псевдобемит - AlOOH, либо байерит - Al(ОН)3. Известен способ получения гидроксида алюминия байеритной структуры [Пат. 236438, (РФ). Способ получения байеритного гидроксида алюминия. // В.А.Дзисько, Т.С.Винникова, Ю.О.Булгакова].

Наиболее близким к заявляемому по технической сущности является способ получения гидроксида алюминия псевдобемитной структуры, описанный в [Дзисько В.А., Иванова А.С.Основные методы получения активного оксида алюминия. // Изв. СО АН СССР, Сер.хим. наук. 1985. №15, вып.5, с.110-119]. Гидроксид алюминия псевдобемитной структуры получают либо:

1) по «двухстадийному» способу, согласно которому часть гидроксида алюминия осаждают при комнатной температуре («холодное» осаждение - ХО), а другую часть - осаждением при 100°С («горячее» осаждение - ГО), затем обе части ХО и ГО смешивают, выдерживают в течение определенного времени, затем фильтруют, промывают; формование гранул гидроксида алюминия проводят в присутствии кислоты при определенном кислотном модуле; полученные ганулы сушат и прокаливают при требуемой температуре. Основной недостаток получаемого гидроксида и оксида алюминия состоит в том, что при смешении осадков ХО и ГО грубодисперсные агрегаты ГО образуют каркас, в макропорах которого размещается высокодисперсная фаза ХО, в результате формируется бимодальное распределение пор по размерам;

2) осаждением раствора азотнокислой соли алюминия водным раствором аммиака при постоянных значениях рН и температуры, значения которых определяют в большей степени свойства получаемого гидроксида алюминия, а следовательно, и оксида алюминия. Оксид алюминия, полученный из гидроксида, осажденного при комнатной температуре и невысоких рН, обладает мономодальным распределением пор по размерам с преобладающим диаметром пор, равным 8,0 нм; а полученный из гидроксида, осажденного при 100°С, бимодальным распределением пор по размерам.

Изобретение решает задачу получения широкопористого оксида алюминия в γ-форме с мономодальным распределением пор по размерам, средний диаметр которых составляет 9,0-11,0 нм.

Задача решается способом получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, при этом осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58-66%, полученной смешением (66-70)% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке (30-34)% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый оксид алюминия, характеризующегося мономодальным распределением пор по размерам, с величиной удельной поверхности, равной (340÷370) м2/г, объемом пор - (0,82÷1,09) см3/г и средним диаметром пор - 9,2÷11 нм.

Отличительные признаки предлагаемого способа получения гамма-оксида алюминия:

1. Способ получения, включающий осаждение раствора азотнокислого алюминия водным раствором аммиака при рН 7±0,1 и температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч.

2. Способ получения, включающий стадию формования гранул гидроксида алюминия путем смешения одной части высушенного на распылительной сушилке осадка с двумя частями влажного осадка гидроксида при влажности формуемой пасты 58-66% с последующими стадиями сушки и термической обработки. Получаемый оксид алюминия представляет собой γ-Al2O3, характеризующегося мономодальным распределением пор по размерам, величиной удельной поверхности, равной 340-370 м2/г, объемом пор - 0,82-1,09 см3/г, средний диаметр которых составляет 9,2-11 нм.

Основные характеристики получаемого гамма-оксида алюминия определяют:

- фазовый состав на дифрактометре HZG-4C (Германия) в монохроматическом излучении CuKα (λ=1,5418 Å) в интервале углов от 10 до 75° (по 2θ) с шагом сканирования τ=0,05 градуса 2θ и временем накопления 5 с в каждой точке. Фазовый анализ проводят по программе PCW.2.4 путем сопоставления экспериментальных дифрактограмм и теоретически рассчитанных на основе известных структур, взятых из базы структурных данных ICDS с учетом профиля дифракционных линий;

- текстурные характеристики (величину Sуд, объем пор - Vп, средний диаметр пор - dпop и распределение пор по размерам) методом низкотемпературной (-196°С) адсорбции азота на установке ASAP-2400 Micromeritics; предварительно образцы тренируют в вакууме при 150°С.

Получение гамма-оксида алюминия включает осаждение раствора азотнокислого алюминия водным раствором аммиака при постоянном рН, равным 7±0,1, температуре (70±2)°С с последующим «старением» при указанных условиях в течение 3-5 ч, после чего осадок отфильтровывают, промывают дистиллированной водой. Одну часть влажного осадка разбавляют дистиллированной водой для приготовления суспензии с концентрацией (120±5)г Al2O3/л, которую подают на распылительной сушилку, получают порошок с размерами частиц, не превышающих 15-20 мкм, который смешивают с двумя другими частями влажного осадка с образованием пасты с влажностью 58÷66%, которую формуют в виде гранул с последующей их сушкой на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают в токе осушенного воздуха при 550-600°С в течение 4-х ч.

Сущность предлагаемого изобретения иллюстрируется следующими примерами, показывающими изменение фазового состава и текстурных характеристик получаемого оксида алюминия в зависимости от условий осаждения и формования.

Основные характеристики гамма-оксида алюминия приведены в таблице и на Фиг.1-8.

Пример 1.

В реактор, помещенный в термостат, заливают 500 мл дистиллированной воды, устанавливают рН-метр и включают обогрев реактора и мешалку; при достижении температуры 70°С в реактор дозируют раствор азотнокислого алюминия, содержащего 100 г Al2O3, со скоростью 25 мл/мин, одновременно добавляя 900 мл водного раствора NH4OH для поддержания рН осаждения, равным 7,0±0,1. Полученную суспензию выдерживают при указанных условиях в течение 3 ч, после чего фильтруют и промывают дистиллированной водой. Одну третью часть отмытого влажного осадка разбавляют дистиллированной водой до концентрации (120±5)г Al2O3/л и полученную суспензию подают на распылительную сушилку для получения порошка с размером частиц не более 15-20 мкм. Высушенный порошок гидроксида алюминия смешивают с остальными 2/3 частями влажного осадка с образованием пасты с влажностью 62,3%, которую формуют в виде гранул, сушат на воздухе, затем в сушильном шкафу при 110°С в течение 12-14 ч, после чего прокаливают при 550°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.1.

Пример 2.

Аналогичен примеру 1. Отличие состоит в том, что влажность формуемой пасты составляет 60,3%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.4.

Пример 3.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 4 ч. Влажность формуемой пасты составляет 59,9%; гранулы прокаливают при 600°С в течение 4 ч.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.2.

Пример 4.

Аналогичен примеру 1. Отличие состоит в том, что полученную суспензию выдерживают при указанных условиях в течение 5 ч. Влажность формуемой пасты составляет 65,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.3.

Пример 5.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 63,0%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.5.

Пример 6.

Аналогичен примеру 4. Отличие состоит в том, что влажность осадка, используемого при смешении с высушенным порошком гидроксида алюминия, составляет 58,1%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.6.

Пример 7.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 7,0±0,1 и температуре 90°С. Влажность формуемой пасты составляет 59,7%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.7.

Пример 8.

Аналогичен примеру 1. Отличие состоит в том, что осаждение гидроксида проводят при рН 9,0 и температуре 70°С. Влажность формуемой пасты составляет 61,5%.

Характеристики полученного γ-оксида алюминия приведены в таблице и на Фиг.8.

Показатели γ-оксида алюминия по всем примерам приведены в таблице и на Фиг.1-8.

Таблица
Основные показатели гамма-оксида алюминия
№№ при мера Условия получения рН-Т-τ (ч) Влажность формуемой пасты, % Tпрок, °C Фазовый состав Текстурные характеристики
S,м2 Vп,см3 dпор, нм Распределение пор по размерам
1 7-70-3 62,3 550 γ-Al2O3 340 0,87 10,1 Мономодальное
2 7-70-3 60,3 600 γ-Al2O3 345 1,09 11,0 Мономодальное
3 7-70-4 59,9 600 γ-Al2O3 355 0,94 10,6 Мономодальное
4 7-70-5 65,7 550 γ-Al2O3 370 1,01 11,0 Мономодальное
5 7-70-5 63,0 550 γ-Al2O3 350 0,84 9,5 Мономодальное
6 7-70-5 58,1 550 γ-Al2O3 355 0,82 9,2 Мономодальное
7 7-90-5 59,7 550 γ-Al2O3 298 0,45 6,1 Мономодальное
8 9-70-5 61,5 550 γ-Al2O3 270 0,44 6,5 Мономодальное

Распределение пор по размерам по всем примерам приведены на Фиг.1-8.

Фиг.1. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 62,3%, прокаленного при 550°С.

Фиг.2. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-3, при влажности формуемой пасты - 60,3%, прокаленного при 600°С.

Фиг.3. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-4, при влажности формуемой пасты - 59,9%, прокаленного при 600°С.

Фиг.4. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 65,7%, прокаленного при 550°С.

Фиг.5. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 63,0%, прокаленного при 550°С.

Фиг.6. Распределение пор по размерам для γ-Al2O3, полученного при 7-70-5, при влажности формуемой пасты - 58,1%, прокаленного при 550°С.

Фиг.7. Распределение пор по размерам для γ-Al2O3, полученного при 7-90-5, при влажности формуемой пасты - 59,7%, прокаленного при 550°С.

Фиг.8. Распределение пор по размерам для γ-Al2O3, полученного при 9-70-5, при влажности формуемой пасты - 61,5%, прокаленного при 550°С.

Как видно из приведенных примеров, таблицы и Фиг., предлагаемый нитратно-аммиачный способ осаждения при рН 7, температуре 70°С и времени выдержки суспензии при указанных условиях в течение 3-5 ч с последующим формованием гранул при влажности формуемой пасты 58÷66% позволяет решать задачу получения широкопористого оксида алюминия в γ-форме с величиной удельной поверхности, равной (340-370) м2/г, объемом пор - (0,82-1,09) см3/г и средним диаметром пор - 9,2-11 нм, при этом распределение по размерам является мономодальным.

Повышение температуры осаждения до 90°С или повышение рН осаждения до 9 при одном и том же времени выдержки суспензии (τ=5 ч) приводит к значительному снижению величины удельной поверхности, объема пор и среднего диаметра пор при сохранении мономодального распределения пор по размерам.

Способ получения гамма-оксида алюминия осаждением раствора азотнокислого алюминия водным раствором аммиака с последующими стадиями фильтрации, промывки, сушки и прокаливания, отличающийся тем, что осаждение проводят при рН 7±0,1, температуре 70±2°С, времени выдержки суспензии в течение 3-5 ч с последующим формованием пасты с влажностью 58÷66%, полученной смешением 66÷70% влажного осадка гидроксида и порошка, высушенного на распылительной сушилке 30÷34% влажного осадка гидроксида, приготовленного в виде суспензии, с последующими стадиями сушки и прокаливания при 550-600°С, при этом получают широкопористый гамма-оксид алюминия, характеризующийся мономодальным распределением пор по размерам, с величиной удельной поверхности, равной 340÷370 м/г, объемом пор - 0,82÷1,09 см/г и средним диаметром пор - 9,2÷11 нм.
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
СПОСОБ ПОЛУЧЕНИЯ ШИРОКОПОРИСТОГО ГАММА-ОКСИДА АЛЮМИНИЯ
Источник поступления информации: Роспатент

Showing 331-340 of 366 items.
04.06.2019
№219.017.73cb

Способ диагностирования в реальном времени судовой электроэнергетической системы

Изобретение относится к диагностике функциональности судовой электроэнергетической системы. Способ характеризуется тем, что содержится система диагностирования преобразователя частоты; система диагностирования асинхронного двигателя; система диагностирования синхронного генератора; система...
Тип: Изобретение
Номер охранного документа: 0002448345
Дата охранного документа: 20.04.2012
07.06.2019
№219.017.7502

Способ получения противообрастающей эмали по резине

Изобретение относится к средствам защиты от обрастания морскими организмами подводных частей судов, кораблей, субмарин и гидротехнических сооружений, и конкретно к необрастающим эмалям по резине. При осуществлении способа сначала вальцуют каучук при температуре не более 50°С в течение 2-3...
Тип: Изобретение
Номер охранного документа: 0002690809
Дата охранного документа: 05.06.2019
19.06.2019
№219.017.89dd

Автоматизированное устройство для охлаждения образцов в процессе проведения длительных усталостных испытаний сварных образцов при низких температурах

Изобретение относится к области судостроения (прочности конструкции корпусов судов), касается вопросов обеспечения и повышения эксплуатационного ресурса судов арктического плавания, сварные конструкции которых находятся под воздействием циклических нагрузок и низких температур. Заявленное...
Тип: Изобретение
Номер охранного документа: 0002457460
Дата охранного документа: 27.07.2012
19.06.2019
№219.017.8a28

Способ диагностики вида аэроупругих колебаний рабочих лопаток осевой турбомашины

Изобретение предназначено для использования в энергомашиностроении и может найти широкое применение при создании систем диагностики осевых турбомашин в авиации и энергомашиностроении. Способ диагностики заключается в том, регистрируют сигналы с тензодатчиков на рабочих лопатках и с датчика...
Тип: Изобретение
Номер охранного документа: 0002402751
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8ab1

Роторный узел для газотурбинного двигателя

Роторный узел для газотурбинного двигателя содержит пару металлических дисков с центральным отверстием под вал ротора и множеством прецизионно обработанных сквозных отверстий под штифт, равномерно распределенных по длине двух концентрических окружностей, и лопаточный узел, размещенный между...
Тип: Изобретение
Номер охранного документа: 0002439337
Дата охранного документа: 10.01.2012
19.06.2019
№219.017.8bfa

Тепловой двигатель

Изобретение решает техническую задачу по созданию роторного теплового двигателя. Тепловой двигатель включает топку с теплообменником и блок сжатия и расширения, выполненный в корпусе. В цилиндрической полости корпуса установлен ротор. В карманах корпуса расположены, по меньшей мере, два...
Тип: Изобретение
Номер охранного документа: 0002460898
Дата охранного документа: 10.09.2012
03.07.2019
№219.017.a499

Способ одновременного измерения дальности, скорости и ускорения малоскоростной маневрирующей воздушной цели в импульсно-доплеровских радиолокационных станциях при высокой частоте повторения импульсов и линейной частотной модуляции

Изобретение относится к способу одновременного измерения дальности, скорости и ускорения малоскоростной маневрирующей воздушной цели (ВЦ) в импульсно-доплеровских радиолокационных станциях (ИД РЛС) при высокой (ВЧП) частоте повторения импульсов и линейной частотной модуляции (ЛЧМ) в ИД РЛС,...
Тип: Изобретение
Номер охранного документа: 0002692912
Дата охранного документа: 01.07.2019
17.07.2019
№219.017.b5ee

Способ приготовления стекольной шихты

Изобретение относится к способам приготовления шихты для производства стекла. Способ приготовления стекольной шихты включает измельчение и смешение сырьевых материалов, при этом сырьевые материалы, твердость которых 5 и более единиц по шкале Мооса, измельчают до достижения размера частиц менее...
Тип: Изобретение
Номер охранного документа: 0002694658
Дата охранного документа: 16.07.2019
16.08.2019
№219.017.c00f

Устройство для измерения параметров изгибных пьезокерамических преобразователей

Изобретение относится к области гидроакустики. Устройство для измерения параметров изгибных пьезокерамических преобразователей содержит гидравлическую камеру высокого давления, снабженную эластичной мембраной, излучатель звука, образцовый и контролируемый преобразователи. В качестве излучателя...
Тип: Изобретение
Номер охранного документа: 0002697432
Дата охранного документа: 14.08.2019
17.08.2019
№219.017.c10d

Способ обнаружения, измерения дальности и скорости низколетящей малоскоростной цели в импульсно-доплеровских радиолокационных станциях при высокой частоте повторения импульсов и инвертируемой линейной частотной модуляции

Изобретение относится к радиолокации воздушных целей (ВЦ) и может быть использовано в импульсно-доплеровских радиолокационных станциях (РЛС). Технический результат – повышение точности обнаружения, измерения дальности и скорости низколетящей малоскоростной цели. Указанный результат достигается...
Тип: Изобретение
Номер охранного документа: 0002697509
Дата охранного документа: 15.08.2019
Showing 271-272 of 272 items.
19.04.2019
№219.017.3385

Катализатор, способ приготовления носителя, способ приготовления катализатора и способ окисления монооксида углерода

Изобретение относится к катализаторам низкотемпературного окисления монооксида углерода (СО), способу их получения и способу окисления СО с целью защиты окружающей среды от загрязнений СО. Катализатор окисления монооксида углерода представляет собой композицию Pd/C-K, где: С - мезопористый...
Тип: Изобретение
Номер охранного документа: 0002446878
Дата охранного документа: 10.04.2012
27.06.2019
№219.017.992e

Катализатор, способ его получения (варианты) и способ гидрообессеривания дизельной фракции

Изобретение относится к катализаторам гидрообессеривания дизельных фракций, способу его получения (варианты) и способу гидрообессерования дизельной фракции и может применяться в отраслях нефтеперерабатывающей и нефтехимической промышленности. Предложенный катализатор представляет собой...
Тип: Изобретение
Номер охранного документа: 0002313390
Дата охранного документа: 27.12.2007
+ добавить свой РИД