×
10.05.2013
216.012.3de0

Результат интеллектуальной деятельности: СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОГО ПРОИЗВОДСТВА ЛИСТОВОГО ПРОКАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к технологии получения листового проката, используемого в бронезащитных конструкциях. Для повышения бронестойкости листового проката осуществляют выплавку стали, ее рафинирование с получением стали, содержащей, мас.%: 0,25-0,35 С, 0,6-0,7 Si, 0,6-0,9 Mn, 0,10-0,15 Al, 0,70-0,95 Ni, 3,1-3,3 Со, 0,4-0,6 Cu, 2,9-3,3 Cr, 0,4-0,5 Мо, 0,1-0,2 V, не более 0,005 S, не более 0,005 Р, остальное Fe, разливку стали в слитки с еезавершением при температуре не менее чем на 8°С выше температуры ликвидуса. Полученные слитки нагревают и проводят многопроходную обжимную прокатку в продольном направлении с суммарным относительным обжатием не менее 85% с получением сляба, который подвергают прокатке за два передела, причем при первом переделе сляб обжимают до толщины листа, в 2-10 раз превышающей конечную, и охлаждают водой со скоростью до 400°С/мин, затем лист нагревают до температуры не ниже 900°С и прокатывают до конечной толщины с температурой конца прокатки не ниже 650°С и незамедлительно проводят закалку водой, а низкотемпературный отпуск осуществляют с интервалом не более 8 ч при температуре 100-200°С. 2 табл.
Основные результаты: Способ производства броневого листового проката, включающий выплавку стали, рафинирование, разливку в слитки, нагрев, многопроходные обжимную прокатку в слябы, последующую прокатку в листы конечной толщины, закалку и низкотемпературный отпуск, отличающийся тем, что сталь после рафинирования имеет следующий химический состав, мас.%: разливку стали в слитки завершают при температуре не менее, чем на 8°С выше температуры ликвидуса, обжимную прокатку осуществляют в продольном направлении с суммарным относительным обжатием не менее 85% с получением сляба, а сляб подвергают прокатке за два передела, причем при первом переделе сляб обжимают до толщины листа, в 2-10 раз превышающей конечную, и охлаждают водой со скоростью до 400°С/мин, затем лист нагревают до температуры не ниже 900°С и прокатывают до конечной толщины с температурой конца прокатки не ниже 650°С и незамедлительно проводят закалку водой, а низкотемпературный отпуск осуществляют с интервалом не более 8 ч при температуре 100-200°С.

Изобретение относится к области металлургии, конкретнее к технологии получения свариваемых листовых сталей, используемых в бронезащитных конструкциях в высокоупрочненном состоянии после закалки на мартенсит.

Бронестойкость листового проката оценивается по минимальной толщине листа Нн, выдерживающей без пробития обстрел из стрелкового оружия по нормали с расстояния 100 м бронебойно-зажигательными пулями типа Б-32 с закаленным сердечником.

Известен способ производства высокопрочного листового проката, включающий получение слябов из хромоникелевой стали, их нагрев до температуры аустенитизации 1000-1180°С, многопроходную горячую прокатку до конечной толщины с температурой конца прокатки 950°С. Горячекатаные листы затем нагревают со скоростью не менее 25°С/мин, закаливают водой и подвергают отпуску (заявка №61-163210, Япония, МПК C21D8/00, 1986 г.).

Недостатки известного способа состоят в том, что листовой прокат имеет низкую бронестойкость при обстреле из стрелкового оружия.

Наиболее близким аналогом к предлагаемому изобретению является способ деформационно-термического производства листового проката (патент РФ №2400558, МПК С22С 38/58, 2010 г.), включающий выплавку стали, рафинирование обработкой синтетическими шлаками, разливку в слитки, нагрев, многопроходные обжимную прокатку в листовые заготовки (слябы) толщиной 100 мм, последующую прокатку в листы конечной толщины 4,0-10,0 мм, закалку водой от температуры 850°С и низкотемпературный отпуск при температуре 250°С, при этом сталь после рафинирования имеет следующий химический состав, мас.%:

Углерод 0,001-0,41
Кремний 0,1-2,6
Марганец 0,1-1,8
Хром 0,1-8,6
Никель 0,1-1,9
Молибден 0,1-0,6
Кобальт 0,05-4,6
Медь 0,1-1,9
Сера не более 0,004
Фосфор не более 0,008
Железо остальное

Недостатки известного способа состоят в том, что листовой прокат имеет низкую бронестойкость при обстреле из стрелкового оружия пулями с термоупрочненными сердечниками.

Техническая задача, решаемая изобретением, состоит в повышении бронестойкости листового проката.

Для решения поставленной технической задачи в известном способе производства броневого листового проката, включающем выплавку стали, рафинирование, разливку в слитки, нагрев, многопроходные обжимную прокатку в слябы, последующую прокатку в листы конечной толщины, закалку и низкотемпературный отпуск, согласно изобретению сталь после рафинирования имеет следующий химический состав, мас.%:

Углерод 0,25-0,35
Кремний 0,6-0,7
Марганец 0,6-0,9
Алюминий 0,10-0,15
Никель 0,70-0,95
Кобальт 3,1-3,3
Медь 0,4-0,6
Хром 2,9-3,3
Молибден 0,4-0,5
Ванадий 0,1-0,2
Сера не более 0,005
Фосфор не более 0,005
Железо остальное

разливку стали в слитки завершают при температуре не менее чем на 8°С выше температуры ликвидуса, обжимную прокатку осуществляют в продольном направлении с суммарным относительным обжатием не менее 85% с получением сляба, а сляб подвергают прокатке за два передела, причем при первом переделе сляб обжимают до толщины листа, в 2-10 раз превышающей конечную, и охлаждают водой со скоростью до 400°С/мин, затем лист нагревают до температуры не ниже 900°С и прокатывают до конечной толщины с температурой конца прокатки не ниже 650°С и незамедлительно проводят закалку водой, а низкотемпературный отпуск осуществляют с интервалом не более 8 ч при температуре 100-200°С.

Сущность изобретения состоит в следующем. За счет оптимального сочетания химического состава стали, получаемого в результате рафинирования, и предложенных параметров всего металлургического деформационно-термического передела достигается специфическое микроструктурно-фазовое состояние стали, которое противостоит нарастающему давлению при соударении с пулей: тонкая структура стали перестраивается в соответствии с законом термодинамики фазовых переходов в конфигурацию, устойчивую в условиях высоких давлений. С увеличением скорости пули возрастает сопротивление ее внедрению в броневой лист. При этом имеет место разрушение термоупрочненного пулевого сердечника. После завершения ударного воздействия в броневом листе протекают процессы релаксации и восстановления его функциональных свойств.

Помимо этого, в листовом прокате в процессе преимущественной прокатки слитков в продольном направлении формируется плоскостная анизотропная текстура. Благодаря этому при соударении из-за разного сопротивления внедрению происходит поворот пули (отклонение от линии обстрела), что снижает ее поражающее воздействие и повышает бронестойкость листов.

Углерод упрочняет закаленную сталь. При концентрации углерода менее 0,25% снижается прочность и твердость, а при его концентрации более 0,35% снижаются вязкость, пластичность и бронестойкость закаленной низкоотпущенной листовой стали.

Кремний раскисляет сталь, повышает прочность и упругость в закаленном и низкоотпущенном состоянии. Но главное - он упрочняет сталь без образования включений карбидов и нитридов, повышает устойчивость мартенсита к отпуску при соударении с пулей. При концентрации кремния менее 0,6% снижается прочность и твердость стали, а при концентрации более 0,7% снижается пластичность и вязкость, из-за чего не обеспечивается достижение максимальной бронестойкости.

Марганец раскисляет и упрочнят сталь. При его концентрации менее 0,6% снижается твердость и прочность листовой стали. Увеличение концентрации марганца более 0,7% в сочетании с 2,9-3,3% хрома приводит к появлению трещин при пулевых ударах, что снижает бронестойкость листового проката.

Алюминий раскисляет сталь и способствует измельчению микроструктуры стали в процессе деформационно-термического производства листов. При содержании алюминия менее 0,10% его влияние мало, вязкостные свойства стали ухудшаются. Увеличение содержания этого элемента более 0,15% ведет к нестабильности вязкостных свойств и снижению бронестойкости листового проката.

Никель способствует повышению пластичности и вязкости закаленной низкоотпущенной стали. Однако при его содержании более 0,95% повышается содержание остаточного аустенита в стали и ухудшаются ее броневые свойства. Снижение содержания никеля менее 0,70% приводит к потере пластичности и ударной вязкости при пулевых ударах.

Кобальт снижает содержание остаточного аустенита в стали, способствует сохранению благоприятной дислокационной морфологии тонкой структуры мартенсита после пулевого соударения. При содержании кобальта менее 3,1% не достигается повышения бронезащитных свойств закаленных листов. Увеличение содержания кобальта сверх 3,3% не приводит к дальнейшему улучшению бронезащитных свойств, а лишь увеличивает расходы на легирующие.

Медь улучшает устойчивость мартенсита закалки при пулевых соударениях, но при концентрации меди менее 0,4% снижается бронестойкость листов. Увеличение концентрации меди более 0,6% снижает ударную вязкость, в результате не достигаются максимально возможные броневые свойства термоулучшенной листовой стали.

Хром улучшает бронестойкость стали. При его концентрации менее 2,9% прочностные и вязкостные свойства не достигают оптимальных значений. Увеличение содержания хрома более 3,3% приводит к потере пластичности и бронестойкости из-за образования трещин при пулевых соударениях.

Молибден и ванадий благоприятно изменяют распределение вредных примесей в мартенсите, уменьшая их концентрацию по границам зерен, повышают прочность и вязкость стали, обусловливают мелкозернистость микроструктуры. При содержании молибдена менее 0,4% или ванадия менее 0,1% прочностные и броневые свойства стали снижаются. Увеличение содержания молибдена более 0,50%, а также ванадия более 0,2% ухудшает пластичность и броневые свойства закаленной низкоотпущенной стали. В обоих случаях не достигаются максимально возможные броневые свойства листового проката.

Сера и фосфор в данной стали являются вредными примесями, их концентрацию снижают в процессе рафинирования расплава. При концентрации серы не более 0,005% и фосфора не более 0,005% их отрицательное влияние на броневые свойства листовой стали незначительно.

Экспериментально установлено, что при завершении разливки при температуре менее чем на 8°С выше температуры ликвидуса, при кристаллизации стали предложенного состава выделяются крупные карбидные включения, которые располагаются по границам кристаллитов, обедняя мартенсит углеродом. В результате снижается прочность мартенситной матрицы и бронестойкость термоулучшенных листов.

В случаях, когда суммарное обжатие слитков в плоскости прокатки в продольном направлении будет менее 85%, снижается степень анизотропии текстуры стали и бронестойкость листового проката.

Если толщина листа после первого передела превышает ее конечную толщину менее чем в 2 раза, то после второго передела листовой прокат характеризуется существенной разнозернистостью микроструктуры, что отрицательно сказывается на бронестойкости. Увеличение указанного отношения толщин более 10 раз способствует росту неблагоприятной текстуры, приобретенной при втором переделе, что также снижает бронестойкость листового проката.

Промежуточное (после первого передела) охлаждение листа со скоростью более 400°С/мин приводит к измельчению микроструктурных составляющих стали, снижению технологической пластичности, что в результате снижает бронестойкость листа.

Нагрев листов в промежуточной толщине до температуры ниже 900°С приводит к ухудшению их пластических и вязкостных свойств в термоулучшенном состоянии, снижению бронестойкости листового проката.

При температуре конца прокатки ниже 650°С последующая незамедлительная закалка не обеспечивает формирование дислокационного мартенсита с реечной морфологией, что снижает бронестойкость листов.

При продолжительности выдержки после закалки более 8 ч имеет место самопроизвольное разупрочнение закаленной листовой стали из-за диффузии углерода, что недопустимо.

Увеличение температуры отпуска выше 200°С приводит к резкому падению твердости. Поэтому при соударении термоупрочненный сердечник пули не разрушается на фрагменты, бронестойкость листа снижается. При температуре отпуска ниже 100°С броневые листы при соударении с пулей склонны к хрупкому разрушению, что снижает их бронестойкость.

Примеры реализации способа

В электродуговой печи объемом 10 т проводили выплавку сталей различным химическим составом. Выплавленную сталь в ковше раскисляли ферромарганцем, ферросилицием, легировали феррохромом, феррованадием, ферромолибденом, вводили металлические кобальт, никель, медь, алюминий. Затем сталь подвергали рафинированию: с помощью синтетических шлаков удаляли избыток серы и фосфора, после чего вакуумировали. Химический состав сталей после рафинирования приведен в табл.1.

Сталь с составом 3 (табл.1), имеющую температуру ликвидуса Тл=1359°С, подвергают разливке в листовые слитки массой 1 т. Разливку последнего слитка завершают при температуре Тр=1370°С, что на величину ΔТ=11°С превышает температуру ликвидуса Тл=1359°С стали данного химического состава.

Полученные слитки после охлаждения до температуры Тсл=800°С загружают в печь, нагревают до температуры 1250°С и подвергают обжимной прокатке в продольном направлении с суммарным относительным обжатием ε=90% с тремя кантовками (для обжатия по ширине) в слябы толщиной Н0=90 мм.

Полученные слябы нагревают до температуры 1250°С и прокатывают на реверсивном листовом стане 2000 в листы с промежуточной толщиной Н1=36 мм, что в n=6 раз превышает конечную толщину листа Н2=6,0 мм.

Относительное обжатие в первом проходе устанавливают равным ε1=8%, которое последовательно снижают к последнему проходу до величины ε1=3%.

Листы в промежуточной толщине H1=36 мм подвергают охлаждению водой со средней скоростью V=280°С/мин.

Охлажденные листы подогревают до температуры Тн=920°С и подвергают повторной прокатке на реверсивном стане 2000 в листы конечной толщины Н2=6,0 мм. Относительную степень обжатия последовательно снижают по проходам с ε2=8% до ε2=3%. Прокатку завершают при температуре Ткп=700°С. Аналогично проводят прокатку листов с конечной толщиной 7,0 и 5,5 мм.

Прокатанные листы подвергают незамедлительной закалке водой от температуры Ткп=700°С и за период времени τ=3 ч загружают в садочную печь с газовым отоплением. Садку закаленных листов нагревают до температуры отпуска Тотп=150°, и после выдержки в 8 ч для выравнивая температуры садки охлаждают до комнатной температуры. От готовых листов на электроэрозионном станке отрезают (без нагрева) образцы для испытания механических свойств и бронестойкости.

Испытания показывают, что полученные листы толщиной Н2=6,0 мм выдерживают испытание на непробитие, т.е. показатель бронестойкости листового проката Нн=6,0 мм.

Варианты реализации способов производства листового проката, а также показатели механических свойств и бронестойкость листов представлены в табл.2.

Из данных, приведенных в табл.2, следует, что при реализации предложенного способа (варианты №2-4) обеспечивается наиболее высокая бронестойкость листового проката: минимальная толщина непробития при испытании на обстрел составляет Нн=6,0 мм. Одновременно с этим достигаются максимальные твердость и прочность листов при повышенном показателе ударной вязкости. В случаях запредельных значений заявленных параметров (варианты №1 и №5), а также реализации известного способа (вариант №6, ближайший аналог) бронестойкость листов снижается, показатель минимальной толщины непробития Нн возрастает.

Технико-экономические преимущества предложенного способа деформационно-термического производства листового проката состоят в том, что одновременная оптимизация химического состава стали в результате легирования и рафинирования, деформационных режимов прокатки, осуществляемых за два передела, промежуточного ускоренного охлаждения в промежуточной толщине, в 2-10 раз превышающей конечную, регламентация предельной продолжительности выдержки перед низкотемпературным отпуском при 100-200°С обеспечивают формирование в микроструктуре готового листового проката дислокационного мартенсита с реечной морфологией и анизотропию прочностных свойств.

Таблица 1
Химический состав броневых сталей
№ состава Содержание химических элементов, мас.%
С Si Mn Al Ni Со Cu Cr Мо V S Р Fe
1 0,24 0,50 0,50 0,09 0,60 3,0 0,3 2,8 0,30 0,09 0,003 0,003 Остальн.
2 0,25 0,60 0,60 0,10 0,70 3,1 0,4 2,9 0,40 0,10 0,003 0,004 -
3 0,30 0,65 0,75 0,13 0,82 3,2 0,5 3,1 0,45 0,15 0,004 0,003 -
4 0,35 0,70 0,90 0,15 0,95 3,3 0,6 3,3 0,50 0,20 0,005 0,005 -
5 0,36 0,80 0,95 0,16 0,97 3,4 0,7 3,4 0,60 0,30 0,006 0,006 -
6 0,30 0,66 1,50 - 0,80 3,4 1,0 6,8 0,40 - 0,004 0,008 -

Способ производства броневого листового проката, включающий выплавку стали, рафинирование, разливку в слитки, нагрев, многопроходные обжимную прокатку в слябы, последующую прокатку в листы конечной толщины, закалку и низкотемпературный отпуск, отличающийся тем, что сталь после рафинирования имеет следующий химический состав, мас.%: разливку стали в слитки завершают при температуре не менее, чем на 8°С выше температуры ликвидуса, обжимную прокатку осуществляют в продольном направлении с суммарным относительным обжатием не менее 85% с получением сляба, а сляб подвергают прокатке за два передела, причем при первом переделе сляб обжимают до толщины листа, в 2-10 раз превышающей конечную, и охлаждают водой со скоростью до 400°С/мин, затем лист нагревают до температуры не ниже 900°С и прокатывают до конечной толщины с температурой конца прокатки не ниже 650°С и незамедлительно проводят закалку водой, а низкотемпературный отпуск осуществляют с интервалом не более 8 ч при температуре 100-200°С.
Источник поступления информации: Роспатент

Showing 71-78 of 78 items.
29.03.2019
№219.016.f827

Способ обнаружения взрывчатых веществ

Изобретение может быть использовано при создании приборов обнаружения следовых количеств взрывчатых веществ (ВВ), применяемых для обеспечения безопасности воздушного, автомобильного, водного железнодорожного транспорта, производственных, офисных, жилых и иных помещений. Способ обнаружения ВВ...
Тип: Изобретение
Номер охранного документа: 0002460067
Дата охранного документа: 27.08.2012
10.04.2019
№219.017.053b

Способ получения наноразмерного порошка на основе системы трикальцийфосфат-гидроксиапатит для синтеза керамических биоматериалов

Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Для снижения степени агрегированности и повышения удельной поверхности влажные порошки,...
Тип: Изобретение
Номер охранного документа: 0002367633
Дата охранного документа: 20.09.2009
19.04.2019
№219.017.3468

Сверхпроводящий композиционный материал на основе втсп соединений и способ его получения

Изобретение относится к разработке новых составов ВТСП композитов на основе Bi-ВТСП соединений с повышенными токонесущими свойствами. Сущность изобретения: сверхпроводящий композиционный материал на основе висмутовых ВТСП соединений содержит порошок синтезированных висмутовых ВТСП соединений...
Тип: Изобретение
Номер охранного документа: 0002460175
Дата охранного документа: 27.08.2012
09.05.2019
№219.017.4d20

Термоэлектрохимический генератор (тэхг)

Изобретение относится к области преобразования тепловой энергии в электрическую в термоэлектрохимическом генераторе (ТЭХГ). Техническим результатом изобретения является улучшение массогабаритных характеристик и повышение КПД. Согласно изобретению ТЭХГ содержит анодную полость, заполненную...
Тип: Изобретение
Номер охранного документа: 0002355075
Дата охранного документа: 10.05.2009
09.06.2019
№219.017.7e35

Способ получения нанодисперсного гидроксиапатита для медицины

Изобретение относится к способу получения нанодисперсного гидроксиапатита осаждением из растворов солей кальция и фосфатов щелочных металлов и/или аммония в присутствии биополимера, например желатина или крахмала, концентрацией 0,1-1 мас.%. Образующийся осадок фосфата кальция, имеющий...
Тип: Изобретение
Номер охранного документа: 0002402483
Дата охранного документа: 27.10.2010
19.06.2019
№219.017.8936

Композиционный материал на основе гидроксиапатита и карбоната кальция для заполнения костных дефектов при реконструктивно-пластических операциях

Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для заполнения костных дефектов. Изобретение представляет композиционный материал на основе гидроксиапатита и карбоната кальция,...
Тип: Изобретение
Номер охранного документа: 0002429885
Дата охранного документа: 27.09.2011
19.06.2019
№219.017.8975

Низкотемпературная фторгидроксиапатитовая керамика для реконструкции костных дефектов

Изобретение относится к медицине, в частности к кальцийфосфатным фторгидроксиапатитовым керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Получение прочного ФГА связано с высокой температурой обжига керамики....
Тип: Изобретение
Номер охранного документа: 0002428206
Дата охранного документа: 10.09.2011
10.07.2019
№219.017.b122

Способ получения наноразмерного порошка для биоматериалов

Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Для снижения степени агрегированности и повышения площади удельной поверхности осажденные...
Тип: Изобретение
Номер охранного документа: 0002440149
Дата охранного документа: 20.01.2012
Showing 71-80 of 95 items.
29.03.2019
№219.016.ef53

Способ охлаждения валков сортопрокатной клети

Изобретение относится к прокатному производству и может быть использовано на сортопрокатных станах для охлаждения валков с калибрами. Задача изобретения - повышение стойкости валков. В способе охлаждения валков сортопрокатной клети, включающем подачу из форсунок на ручьи, образующие калибры,...
Тип: Изобретение
Номер охранного документа: 0002287384
Дата охранного документа: 20.11.2006
29.03.2019
№219.016.f0ca

Способ отжига рулонов холоднокатаных полос

Изобретение относится к области металлургии и может быть использовано при рекристаллизационном отжиге холоднокатаных полос из низкоуглеродистой стали, смотанных в рулоны, в одностопной муфельной печи с газовым отоплением и водородной защитной атмосферой. Для сокращения длительности отжига и...
Тип: Изобретение
Номер охранного документа: 0002344183
Дата охранного документа: 20.01.2009
29.03.2019
№219.016.f0cb

Способ прокатки сортовых профилей

Изобретение предназначено для повышения качества поверхности сортовых профилей из стальных непрерывно-литых заготовок. Способ включает нагрев непрерывно-литых заготовок в печи, гидросбив окалины и многократное обжатие в черновых проходах с вытяжными калибрами по системе «ромб-квадрат»....
Тип: Изобретение
Номер охранного документа: 0002344010
Дата охранного документа: 20.01.2009
29.03.2019
№219.016.f112

Способ прокатки сортовых профилей

Изобретение предназначено для повышения качества сортовых профилей и выхода годного при прокатке на мелкосортных и проволочных станах с непрерывными группами клетей. Способ включает многопроходное обжатие полосы в непрерывных черновой и чистовой группах клетей. Задача решается за счет того, что...
Тип: Изобретение
Номер охранного документа: 0002343015
Дата охранного документа: 10.01.2009
29.03.2019
№219.016.f1ae

Способ производства полос из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах полос для электросварных прямошовных обсадных труб, предназначенных для обустройства нефтяных и газовых скважин. Для повышения...
Тип: Изобретение
Номер охранного документа: 0002312905
Дата охранного документа: 20.12.2007
10.04.2019
№219.017.04df

Способ кинетического низкотемпературного отпуска

Изобретение относится к термической обработке металлов и может быть использовано при производстве листового термически улучшенного высокопрочного проката из углеродистых и легированных сталей. Для повышения твердости, прочности, вязкости и пластических свойств закаленный на мартенсит лист...
Тип: Изобретение
Номер охранного документа: 0002304624
Дата охранного документа: 20.08.2007
19.04.2019
№219.017.2dcf

Способ производства штрипсов

Изобретение относится к области прокатного производства, в частности к получению штрипсов, используемых при изготовлении сварных труб для магистральных нефтегазопроводов. Для снижения себестоимости и повышения эксплуатациионных свойств штрипсов способ включает выплавку стали, непрерывную...
Тип: Изобретение
Номер охранного документа: 0002348703
Дата охранного документа: 10.03.2009
18.05.2019
№219.017.54f0

Способ прокатки катанки

Изобретение относится к прокатному производству и может быть использовано при горячей сортовой прокатке катанки из углеродистой стали, используемой для волочения канатной проволоки. Задача, решаемая изобретением, - повышение качества и выхода годной катанки. Способ включает нагрев заготовки до...
Тип: Изобретение
Номер охранного документа: 0002292247
Дата охранного документа: 27.01.2007
18.05.2019
№219.017.5619

Способ производства горячекатаных полос

Изобретение предназначено для снижения затрат при производстве полос конструкционного назначения из углеродистых сталей на непрерывных широкополосных станах. Способ включает нагрев слябов, черновую прокатку, чистовую прокатку полос до конечной толщины с регламентированными температурами конца...
Тип: Изобретение
Номер охранного документа: 0002345849
Дата охранного документа: 10.02.2009
18.05.2019
№219.017.56a3

Способ профилирования валков чистовой группы клетей кварто стана горячей прокатки полос

Способ предназначен для снижения неплоскостности, разнотолщинности проката и расходного коэффициента металла при прокатке в чистовых клетях кварто. Способ включает придание бочкам опорных и рабочих валков регламентированной формы образующей. Равномерность деформации по ширине полосы...
Тип: Изобретение
Номер охранного документа: 0002319560
Дата охранного документа: 20.03.2008
+ добавить свой РИД