×
10.05.2013
216.012.3d59

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКСИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях. Способ получения оксида урана включает нагрев диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла. Причем перед нагревом диоксида урана в реакционной емкости к диоксиду урана добавляют металлический уран в количестве 20÷40% мас. от массы диоксида урана. Изобретение обеспечивает упрощение и снижение энергоемкости процесса получения оксида урана. 1 табл., 1 пр.
Основные результаты: Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости внешним источником тепла до температуры 500-900°С в кислородсодержащей среде с последующей выдержкой при указанной температуре до прекращения процесса образования оксида урана (см. Я.М.Стерлин. Металлургия урана. - М.: Государственное издательство литературы в области атомной науки и техники, 1962, с.64-69).

Недостатками этого способа получения оксида урана являются значительные энергозатраты на поддержание заданного температурного режима, а также невысокая производительность.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости в среде кислородсодержащего агента внешним источником тепла до температуры 500-900°С и последующей выдержке до прекращения процесса, причем в качестве реакционной емкости используют емкость, образующую замкнутое пространство с внутренним объемом, составляющим 2-4 объема загруженного металлического урана, и имеющую отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, а после нагрева до температуры 500-900°С внешний источник отключают (см. патент RU 2247076, МПК C01G 43/01, 22.07.2003).

Недостатком известного способа получения оксида урана является значительное отклонение содержания кислорода в получаемом оксиде урана от стехиометрического содержания кислорода в оксиде урана (закиси-окиси урана) при использовании в качестве исходного продукта диоксида урана.

Наиболее близким к заявленному способу получения оксида урана по технической сущности и достигаемому результату - прототипом - является способ получения оксида урана, заключающийся в нагреве урансодержащего продукта до 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, причем при получении в качестве оксида урана закиси-окиси урана из диоксида урана в качестве урансодержащего продукта используют диоксид урана, подвергнутый предварительному измельчению до крупности менее 2 мм, процесс осуществляют в две стадии: на первой стадии в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии урансодержащий продукт перегружают в реакционную емкость с открытой поверхностью, составляющей 30-40% от общей поверхности реакционной емкости, и осуществляют нагрев до 500-600°С с последующей выдержкой до прекращения процесса (см. патент RU 2299857, МПК C01G 43/01, 15.11.2005).

Недостатком известного способа получения оксида урана являются сложность и энергоемкость процесса.

Эти недостатки связаны с тем, что процесс осуществляют в две стадии: на первой стадии - в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии - в емкости с открытой поверхностью. Причем нагрев до 500-900°С на первой стадии и последующий нагрев до 500-600°С с выдержкой при этой температуре на второй стадии осуществляют внешним источником тепла.

Перед авторами стояла задача упрощения и снижения энергоемкости способа получения оксида урана.

Поставленная задача решается тем, что в способе получения оксида урана, включающем нагрев урансодержащего продукта - диоксида урана до температуры 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости с последующим исключением внешнего источника тепла, перед нагревом диоксида урана в реакционной емкости до 500-900°С в объеме диоксида урана размещают произвольным образом металлический уран в количестве 20-40% масс. от массы диоксида урана.

Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем.

Предложенный способ получения оксида урана (U3O8) реализуется в условиях, обеспечивающих саморазогрев и тепловой баланс процесса за счет экзотермической реакции взаимодействия урана с кислородом

3U+4O2→U3O8+260 ккал/(г·атом урана)

после предварительного нагрева до температуры 500÷900°С.

Однако окисление диоксида урана (UO2) до закиси-окиси урана (U3O8) после нагрева до 500-900°С проходит в одну стадию по реакции

UO2→U3O8+Q,

а окисление металлического урана происходит ступенчато, с предварительным образованием промежуточных оксидов по реакции

U→UO→UO2→U3O8+Q.

Таким образом, в заявленном способе предварительно образуется закись-окись урана из диоксида урана, а реакция взаимодействия металлического урана с кислородом продолжается, при этом выделяющееся тепло способствует гомогенизации продукта окисления с получением содержания кислорода в закиси-окиси урана, близкого к стехиометрическому содержанию.

Т.е. в заявленном способе получения оксида урана совмещаются два процесса, а именно, получение непосредственно закиси-окиси урана и ее гомогенизации по кислородному коэффициенту, что упрощает способ и снижает его энергоемкость.

Количество вводимого металлического урана в диоксид урана 20-40% масс. определяется тем, что при меньшем содержании урана (<20% масс.) из-за недостатка выделившегося тепла при сгорании металлического урана не обеспечивается гомогенизация получаемого продукта - закиси-окиси урана по кислородному коэффициенту. Кислородный коэффициент находится в пределах 2,50-2,70, однако разброс в таких пределах не допускается по техническим условиям на продукт.

В случае введения металлического урана в двуокись урана более 40% масс. происходит избыточное тепловыделение при сгорании металлического урана, что приводит к спеканию получаемого продукта с образованием агломерата, требующего дополнительного измельчения и, следовательно, приводит к усложнению процесса.

Предложенный способ получения оксида урана - закиси-окиси урана иллюстрируется следующим примером.

Пример

Двуокись урана в виде компактного материала или крупки <2 мм загружали в реакционную емкость из нержавеющей стали, выполненную в виде прямоугольного контейнера с крышкой и отверстиями для доступа кислородсодержащего агента. Размеры реакционной емкости изменялись таким образом, что соотношение ее внутреннего объема и загружаемого урансодержащего продукта составляло от 2 до 4, а площадь отверстий составляла от 5 до 25% от общей площади поверхности реакционной емкости, к диоксиду урана добавляли металлический уран в количестве 20-40% масс. от массы диоксида урана.

Реакционную емкость с урансодержащим продуктом помещали в муфельную печь и нагревали до 500÷900°С. При достижении заданной температуры 500÷900°С внешний источник нагрева (муфельная печь) отключали, и далее процесс окисления протекал в режиме самонагрева до прекращения процесса.

В таблице приведены примеры осуществления предложенного способа получения оксида урана на граничные и промежуточные значения параметров в сопоставлении с известным способом.

Как следует из приведенных в таблице данных, предложенный способ получения оксида урана (примеры 1-3) обеспечивает в сравнении с известным способом (примеры 4-5) его упрощение и снижение энергоемкости.

Таблица
Параметры Примеры
1 2 3 4 известный 5 известный
Температура нагрева внешним источником, °С 500 700 900 500 900
Масса загрузки диоксида урана, кг 0,365 0,704 0,680 0,5 1,0
Масса загрузки металлического урана, кг 0,073 0,211 0,272 - -
Соотношение масс металла и диоксида, % 20 30 40 - -
Объем загруженного урансодержащего продукта, см3 100 200 200 150 300
Объем реакционной емкости, см3 200 300 400 300 1200
Соотношение объемов реакционной емкости и загруженного продукта 2 1,5 2 2 4
Соотношение площади отверстий и поверхности реакционной емкости, % 5 15 25 5 25
Параметры 2-й стадии окисления Температура нагрева, °С - - - 500 600
Соотношение площади поверхности и общей поверхности реакционной емкости, % - - - 30 40
Энергоемкость процесса, кВт/час 2,0 2,6 3,2 4,8 6,1
Количество стадий окисления 1 1 1 2 2
Качество продукта U3O8 Кислородный коэффициент 2,65 2,63 2,64 2,65 2,64
Отклонение от стехиометрии, % -0,75 -1,50 -1,12 -0,75 -1,12

Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.
Источник поступления информации: Роспатент

Showing 71-78 of 78 items.
29.05.2019
№219.017.62db

Способ определения кислородного коэффициента в диоксиде урана и устройство для его осуществления

Изобретение относится к области изготовления ядерного топлива в виде диоксида урана и может быть использовано для определения атомного кислородного коэффициента в диоксиде урана. Способ включает заполнение измерительного цилиндра 1% водным раствором хлористого натрия. Высчитывают массу навески...
Тип: Изобретение
Номер охранного документа: 0002688141
Дата охранного документа: 20.05.2019
04.06.2019
№219.017.736c

Способ нанесения многослойного покрытия на оптические подложки и установка для осуществления способа

Способ включает напыление путем электронно-лучевого испарения материала покрытия в вакууме и осаждения паров на поверхности подложки при вращении подложек механизмом с планетарной передачей. Осуществляют прямой оптический контроль путем измерения спектра пропускания покрытия на каждом обороте...
Тип: Изобретение
Номер охранного документа: 0002690232
Дата охранного документа: 31.05.2019
06.06.2019
№219.017.7438

Способ получения таблетированного пористого диоксида урана

Изобретение относится к области ядерной энергетики и может быть использовано для получения таблеток диоксида урана топливных сердечников высокотемпературных вентилируемых тепловыделяющих элементов (ТВЭЛОВ) преимущественно термоэмиссионных реакторов-преобразователей (ТРП) встроенного варианта....
Тип: Изобретение
Номер охранного документа: 0002690492
Дата охранного документа: 04.06.2019
09.10.2019
№219.017.d36f

Конструкционный материал на основе молибдена и/или вольфрама или их сплавов с защитным жаростойким покрытием и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к материалам, предназначенным для работы в окислительной среде при высоких температурах, которые могут использоваться в качестве конструкционного материала для ответственных деталей, работающих при высокой температуре в приборостроении,...
Тип: Изобретение
Номер охранного документа: 0002702254
Дата охранного документа: 07.10.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
12.02.2020
№220.018.018d

Способ эксплуатации двухрежимного термоэмиссионного реактора-преобразователя для ядерной энергетической установки

Изобретение относится к способу эксплуатации термоэмиссионного реактора-преобразователя (ТРП) с эмиттерными оболочками ЭГК из упрочненного монокристаллического сплава на основе молибдена, включающий эксплуатацию ТРП на форсированном режиме при постоянной тепловой мощности с последующим выводом...
Тип: Изобретение
Номер охранного документа: 0002713878
Дата охранного документа: 10.02.2020
12.04.2023
№223.018.45cb

Способ наведения лазерных пучков и устройство для его осуществления

Группа изобретений относится к области лазерной локации и лазерной связи в открытом пространстве. Способ наведения лазерных пучков заключается в том, что при помощи источника лазерного излучения формируют лазерный пучок, который разделяют на две части, при этом первый парциальный пучок посылают...
Тип: Изобретение
Номер охранного документа: 0002744040
Дата охранного документа: 02.03.2021
Showing 61-67 of 67 items.
23.02.2019
№219.016.c6d3

Коронирующий электрод электрофильтра

Изобретение относится к электрофильтрам для очистки газов от пыли. Электрод содержит корпус из металлической полосы с расположенными по ее продольным сторонам элементами с фиксированными точками зажигания коронного разряда и средствами для крепления на концах полосы. Элементы выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002680550
Дата охранного документа: 22.02.2019
29.03.2019
№219.016.f174

Способ переработки урансодержащей композиции

Изобретение относится к области металлургии и может быть использовано в производстве ядерного топлива. Фрагментированную урансодержащую композицию, состоящую из диоксида урана и полиэтилена, загружают в реакционную емкость с установленным над ней вытяжным зонтом. Площадь сечения зазора между...
Тип: Изобретение
Номер охранного документа: 0002396211
Дата охранного документа: 10.08.2010
18.05.2019
№219.017.5669

Керамическое ядерное топливо

Изобретение относится к области порошковой металлургии, в частности к производству керамического ядерного топлива, и может быть использовано в ядерных технологиях. Керамическое ядерное топливо содержит делящийся материал в виде диоксида и/или нитрида урана и наноструктурный углеродный...
Тип: Изобретение
Номер охранного документа: 0002396610
Дата охранного документа: 10.08.2010
11.09.2019
№219.017.c9d6

Электрод коронирующий для электрофильтров

Изобретение относится к устройствам электрической очистки газов от мелкодисперсной пыли. Электрод выполнен из двух одинаковых наложенных друг на друга и соединенных между собой точечной сваркой металлических листов толщиной не более 2 мм с U-образно изогнутой в продольном направлении частью...
Тип: Изобретение
Номер охранного документа: 0002699767
Дата охранного документа: 10.09.2019
14.11.2019
№219.017.e16a

Способ рафинирования чернового урана

Изобретение относится к металлургии и атомной технике и может быть использовано для пирометаллургического рафинирования чернового урана, полученного кальциетермическим восстановлением тетрафторида урана. Рафинирование чернового урана, полученного кальциетермическим методом, включает...
Тип: Изобретение
Номер охранного документа: 0002705845
Дата охранного документа: 12.11.2019
09.02.2020
№220.018.014f

Способ переработки уран-молибденовой композиции

Изобретение относится к области металлургии и технологии урана, в частности к способу переработки уран-молибденовой композиции. Способ переработки уран-молибденовой композиции включает ее окисление и прокаливание в воздушной среде с последующим отделением молибдена от урансодержащего твердого...
Тип: Изобретение
Номер охранного документа: 0002713745
Дата охранного документа: 07.02.2020
15.05.2020
№220.018.1cd8

Рама механизма встряхивания молоткового типа коронирующих электродов мокрого электрофильтра

Изобретение относится к электрической очистке газов. В раме механизма встряхивания коронирующие электроды с грузами расположены осесимметрично в осадительном электроде в виде круглой или многогранной трубы. Коронирующие электроды порядно вертикально закреплены в раме подвеса. Рама механизма...
Тип: Изобретение
Номер охранного документа: 0002720861
Дата охранного документа: 13.05.2020
+ добавить свой РИД