×
10.05.2013
216.012.3d59

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ОКСИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях. Способ получения оксида урана включает нагрев диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла. Причем перед нагревом диоксида урана в реакционной емкости к диоксиду урана добавляют металлический уран в количестве 20÷40% мас. от массы диоксида урана. Изобретение обеспечивает упрощение и снижение энергоемкости процесса получения оксида урана. 1 табл., 1 пр.
Основные результаты: Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости внешним источником тепла до температуры 500-900°С в кислородсодержащей среде с последующей выдержкой при указанной температуре до прекращения процесса образования оксида урана (см. Я.М.Стерлин. Металлургия урана. - М.: Государственное издательство литературы в области атомной науки и техники, 1962, с.64-69).

Недостатками этого способа получения оксида урана являются значительные энергозатраты на поддержание заданного температурного режима, а также невысокая производительность.

Известен способ получения оксида урана, заключающийся в нагреве металлического урана в реакционной емкости в среде кислородсодержащего агента внешним источником тепла до температуры 500-900°С и последующей выдержке до прекращения процесса, причем в качестве реакционной емкости используют емкость, образующую замкнутое пространство с внутренним объемом, составляющим 2-4 объема загруженного металлического урана, и имеющую отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, а после нагрева до температуры 500-900°С внешний источник отключают (см. патент RU 2247076, МПК C01G 43/01, 22.07.2003).

Недостатком известного способа получения оксида урана является значительное отклонение содержания кислорода в получаемом оксиде урана от стехиометрического содержания кислорода в оксиде урана (закиси-окиси урана) при использовании в качестве исходного продукта диоксида урана.

Наиболее близким к заявленному способу получения оксида урана по технической сущности и достигаемому результату - прототипом - является способ получения оксида урана, заключающийся в нагреве урансодержащего продукта до 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, причем при получении в качестве оксида урана закиси-окиси урана из диоксида урана в качестве урансодержащего продукта используют диоксид урана, подвергнутый предварительному измельчению до крупности менее 2 мм, процесс осуществляют в две стадии: на первой стадии в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии урансодержащий продукт перегружают в реакционную емкость с открытой поверхностью, составляющей 30-40% от общей поверхности реакционной емкости, и осуществляют нагрев до 500-600°С с последующей выдержкой до прекращения процесса (см. патент RU 2299857, МПК C01G 43/01, 15.11.2005).

Недостатком известного способа получения оксида урана являются сложность и энергоемкость процесса.

Эти недостатки связаны с тем, что процесс осуществляют в две стадии: на первой стадии - в емкости, образующей замкнутое пространство с отверстиями, а на второй стадии - в емкости с открытой поверхностью. Причем нагрев до 500-900°С на первой стадии и последующий нагрев до 500-600°С с выдержкой при этой температуре на второй стадии осуществляют внешним источником тепла.

Перед авторами стояла задача упрощения и снижения энергоемкости способа получения оксида урана.

Поставленная задача решается тем, что в способе получения оксида урана, включающем нагрев урансодержащего продукта - диоксида урана до температуры 500-900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2-4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости с последующим исключением внешнего источника тепла, перед нагревом диоксида урана в реакционной емкости до 500-900°С в объеме диоксида урана размещают произвольным образом металлический уран в количестве 20-40% масс. от массы диоксида урана.

Причинно-следственная связь между существенными признаками и достигаемым техническим результатом заключается в следующем.

Предложенный способ получения оксида урана (U3O8) реализуется в условиях, обеспечивающих саморазогрев и тепловой баланс процесса за счет экзотермической реакции взаимодействия урана с кислородом

3U+4O2→U3O8+260 ккал/(г·атом урана)

после предварительного нагрева до температуры 500÷900°С.

Однако окисление диоксида урана (UO2) до закиси-окиси урана (U3O8) после нагрева до 500-900°С проходит в одну стадию по реакции

UO2→U3O8+Q,

а окисление металлического урана происходит ступенчато, с предварительным образованием промежуточных оксидов по реакции

U→UO→UO2→U3O8+Q.

Таким образом, в заявленном способе предварительно образуется закись-окись урана из диоксида урана, а реакция взаимодействия металлического урана с кислородом продолжается, при этом выделяющееся тепло способствует гомогенизации продукта окисления с получением содержания кислорода в закиси-окиси урана, близкого к стехиометрическому содержанию.

Т.е. в заявленном способе получения оксида урана совмещаются два процесса, а именно, получение непосредственно закиси-окиси урана и ее гомогенизации по кислородному коэффициенту, что упрощает способ и снижает его энергоемкость.

Количество вводимого металлического урана в диоксид урана 20-40% масс. определяется тем, что при меньшем содержании урана (<20% масс.) из-за недостатка выделившегося тепла при сгорании металлического урана не обеспечивается гомогенизация получаемого продукта - закиси-окиси урана по кислородному коэффициенту. Кислородный коэффициент находится в пределах 2,50-2,70, однако разброс в таких пределах не допускается по техническим условиям на продукт.

В случае введения металлического урана в двуокись урана более 40% масс. происходит избыточное тепловыделение при сгорании металлического урана, что приводит к спеканию получаемого продукта с образованием агломерата, требующего дополнительного измельчения и, следовательно, приводит к усложнению процесса.

Предложенный способ получения оксида урана - закиси-окиси урана иллюстрируется следующим примером.

Пример

Двуокись урана в виде компактного материала или крупки <2 мм загружали в реакционную емкость из нержавеющей стали, выполненную в виде прямоугольного контейнера с крышкой и отверстиями для доступа кислородсодержащего агента. Размеры реакционной емкости изменялись таким образом, что соотношение ее внутреннего объема и загружаемого урансодержащего продукта составляло от 2 до 4, а площадь отверстий составляла от 5 до 25% от общей площади поверхности реакционной емкости, к диоксиду урана добавляли металлический уран в количестве 20-40% масс. от массы диоксида урана.

Реакционную емкость с урансодержащим продуктом помещали в муфельную печь и нагревали до 500÷900°С. При достижении заданной температуры 500÷900°С внешний источник нагрева (муфельная печь) отключали, и далее процесс окисления протекал в режиме самонагрева до прекращения процесса.

В таблице приведены примеры осуществления предложенного способа получения оксида урана на граничные и промежуточные значения параметров в сопоставлении с известным способом.

Как следует из приведенных в таблице данных, предложенный способ получения оксида урана (примеры 1-3) обеспечивает в сравнении с известным способом (примеры 4-5) его упрощение и снижение энергоемкости.

Таблица
Параметры Примеры
1 2 3 4 известный 5 известный
Температура нагрева внешним источником, °С 500 700 900 500 900
Масса загрузки диоксида урана, кг 0,365 0,704 0,680 0,5 1,0
Масса загрузки металлического урана, кг 0,073 0,211 0,272 - -
Соотношение масс металла и диоксида, % 20 30 40 - -
Объем загруженного урансодержащего продукта, см3 100 200 200 150 300
Объем реакционной емкости, см3 200 300 400 300 1200
Соотношение объемов реакционной емкости и загруженного продукта 2 1,5 2 2 4
Соотношение площади отверстий и поверхности реакционной емкости, % 5 15 25 5 25
Параметры 2-й стадии окисления Температура нагрева, °С - - - 500 600
Соотношение площади поверхности и общей поверхности реакционной емкости, % - - - 30 40
Энергоемкость процесса, кВт/час 2,0 2,6 3,2 4,8 6,1
Количество стадий окисления 1 1 1 2 2
Качество продукта U3O8 Кислородный коэффициент 2,65 2,63 2,64 2,65 2,64
Отклонение от стехиометрии, % -0,75 -1,50 -1,12 -0,75 -1,12

Способ получения оксида урана, включающий нагрев урансодержащего продукта - диоксида урана до температуры 500÷900°С в среде кислородсодержащего агента в реакционной емкости, образующей замкнутое пространство с внутренним объемом, составляющим 2÷4 объема загружаемого урансодержащего продукта, и имеющей отверстия, суммарная площадь которых составляет от 5 до 25% от площади поверхности реакционной емкости, с последующим исключением внешнего источника тепла, отличающийся тем, что перед нагревом диоксида урана в реакционной емкости до 500÷900°С к диоксиду урана добавляют металлический уран в количестве 20÷40 мас.% от массы диоксида урана.
Источник поступления информации: Роспатент

Showing 51-60 of 78 items.
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
Showing 51-60 of 67 items.
25.08.2017
№217.015.bdba

Способ очистки жидкости, содержащей радионуклиды, и устройство для его осуществления

Группа изобретений относится к атомной и радиохимической промышленности. Способ очистки жидкости, загрязненной радионуклидами, включает размещение в загрязненной жидкости как минимум по одному элементу из разных пористых материалов - гидрофильному и гидрофобному, один конец которых частично...
Тип: Изобретение
Номер охранного документа: 0002616447
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.be99

Способ приготовления смеси мелкодисперсных частиц

Изобретение относится к порошковой металлургии, в частности к способам приготовления смеси порошков для последующего изготовления из смеси изделий, и может быть использовано в машиностроении, атомной и химической промышленности. Описан способ приготовления смеси из частиц различного...
Тип: Изобретение
Номер охранного документа: 0002616712
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d1d8

Способ получения мелкодисперсного металлического порошка

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой...
Тип: Изобретение
Номер охранного документа: 0002621748
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.e1db

Способ получения тетрафторида урана

Изобретение относится к атомной промышленности и химической технологии неорганических веществ, а именно к способу получения тетрафторида урана сухим методом в производстве гексафторида урана или металлического урана. Способ заключается в том, что смешивают диоксид урана с бифторидом аммония,...
Тип: Изобретение
Номер охранного документа: 0002625871
Дата охранного документа: 19.07.2017
26.08.2017
№217.015.e209

Высокотемпературный источник поверхностной ионизации

Изобретение относится к вакуумной технике и может быть использовано для получения пучков ионов при разделении изотопов или масс-спектрометрии. Высокотемпературный источник поверхностной ионизации из монокристаллического материала с объемно-центрированной кубической решеткой снабжен...
Тип: Изобретение
Номер охранного документа: 0002625728
Дата охранного документа: 18.07.2017
19.01.2018
№218.016.048c

Способ переработки гексафторида урана

Изобретение относится к способам переработки гексафторида урана гидрометаллургическим методом с получением диоксидифторида урана и оксидов урана и может быть использовано в атомной промышленности для конверсии обогащенного или обедненного (отвального) гексафторида. Способ включает гидролиз...
Тип: Изобретение
Номер охранного документа: 0002630801
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0965

Гибкий бетавольтаический элемент

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги,...
Тип: Изобретение
Номер охранного документа: 0002631861
Дата охранного документа: 27.09.2017
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
20.02.2019
№219.016.bec3

Способ переработки уран-молибденовой композиции

Изобретение относится к области гидрометаллургии, в частности к способу переработки уран-молибденовой композиции, представляющей собой брак и отходы ядерного производства. Сущность изобретения: способ переработки уран-молибденовой композиции включает окисление уран-молибденовой композиции при...
Тип: Изобретение
Номер охранного документа: 0002395857
Дата охранного документа: 27.07.2010
+ добавить свой РИД