×
10.05.2013
216.012.3cba

СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, ВЛИЯЮЩИХ НА ПРОЛИФЕРАЦИЮ ЭПИДЕРМОИДНЫХ КЛЕТОК КАРЦИНОМЫ ЧЕЛОВЕКА А431

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области медицинской биотехнологии и фармацевтической промышленности и касается способа получения веществ, влияющих на пролиферацию эпидермоидных клеток карциномы человека А431. Описанный способ включает измельчение, гомогенизацию кожи, термоденатурацию супернатанта, охлаждение смеси, центрифугирование денатурированного материала, обработку охлажденным ацетоном, отмывку выпавшего осадка, высушивание, растворение осадка в 0,005-0,015 М растворе трис-НСl+0,15 М NaCl и центрифугирование с последующей хроматографией на колонке с сефадексом G-50 и сбором вещества целевого продукта с молекулярной массой от 1400 до 15000 Да, обессоливанием и лиофилизацией, при этом при хроматографии одновременно с веществом с молекулярной массой от 1400 до 15000 Да собирают вещество с молекулярной массой более 15000 Да, рехроматографируют вещество с молекулярной массой более 15000 Да на колонке с сефадексом G-50 и после рехроматографии собирают два вещества: одно с молекулярной массой более 15000 Да и второе с молекулярной массой от 1400 до 15000 Да, оба вещества обессоливают и лиофилизируют и вещество с молекулярной массой от 1400 до 15000 Да, полученное после рехроматографии, объединяют с веществом с той же молекулярной массой, полученным после первой хроматографии. Представленное изобретение может быть использовано при получении препаратов для лечения заболеваний кожи, а также средств иммунокоррекции. 2 ил., 4 табл., 2 пр.
Основные результаты: Способ получения веществ, влияющих на пролиферацию эпидермоидных клеток карциномы человека А431, включающий измельчение, гомогенизацию кожи в растворе хлористого натрия, ценгрифугирование, термоденатурацию сунернатанта при 75-85°С в течение 10-20 мин, охлаждение смеси до 4°С, центрифугирование денатурированного материала при 5000-15000 g в течение 10-30 мин, обработку охлажденным до -20°С или ниже ацетоном в соотношении 1:6-1:8, отмывку выпавшего осадка охлажденным ацетоном, высушивание при комнатной температуре, растворение осадка в 0,005-0,015 М растворе трис-НСl+0,15 М NaCl, pH 6,0-8,0 и центрифугирование, с последующей хроматографией на колонке с сефадексом G-50 и сбором вещества целевого продукта с молекулярной массой от 1400 до 15000 Да, обессоливанием и лиофилизацией, отличающийся тем, что при хроматографии на колонке с сефадексом G-50 одновременно с веществом с молекулярной массой от 1400 до 15000 Да собирают вещество с молекулярной массой более 15000 Да, рехроматографируют вещество с молекулярной массой более 15000 Да на колонке с сефадексом G-50, после рехроматографии собирают два вещества: одно с молекулярной массой более 15000 Да и второе - с молекулярной массой от 1400 до 15000 Да, оба вещества обессоливают и лиофилизируют и вещество с молекулярной массой от 1400 до 15000 Да, полученное после рехроматографии, объединяют с веществом с той же молекулярной массой, полученным после первой хроматографии.
Реферат Свернуть Развернуть

Изобретение относится к медицине, биологии, фармакологии, иммунологии, медицинской биотехнологии и фармацевтической промышленности и может найти применение при получении препаратов для лечения заболеваний кожи, а также средств иммунокоррекции.

Известен способ получения иммунотропных веществ из кожи свиньи (1). Вещества, полученные этим способом, влияют как на В-, так и на Т-системы иммунитета. Помимо этого, они ингибируют пролиферацию эпидермоидных клеток карциномы человека А431 (2). Однако этот способ сложен. Активность веществ небольшая.

В качестве прототипа взят наиболее близкий к настоящему изобретению способ получения вещества из кожи свиньи, влияющего на пролиферацию и дифференцировку кератиноцитов человека (3), путем измельчения кожи, гомогенизации в растворе хлористого натрия, центрифугирования, термоденатурации, центрифугирования, обработки охлажденным ацетоном, высушивания при комнатной температуре, хроматографии на колонке с сефадексом G-50, обессоливания и лиофилизации. Однако применяя этот метод, получают только вещество с молекулярной массой от 1400 до 15000 Да, влияющее на пролиферацию и дифференцировку кератиноцитов человека и обладающее иммунотропными свойствами (4). Выход вещества небольшой.

Цель изобретения - получение двух активных веществ: одного с молекулярной массой от 1400 до 15000 Да и другого с молекулрной массой более 15000 Да, с одновременным существенным увеличением выхода вещества с молекулярной массой от 1400 до 15000 Да и увеличением активности обоих получаемых веществ, влияющих на пролиферацию эпидермоидных клеток карциномы человека А431.

Эта цель достигается тем, что в способ, взятый в качестве прототипа, на последней стадии вводится этап рехроматографии на том же сефадексе. До стадии рехроматографии этапы методов совпадают: кожу свиньи измельчают, гомогенизируют в растворе хлористого натрия, центрифугируют, подвергают термоденатурации при 75-85°С в течение 10-20 мин, центрифугируют при 5000-15000 g в течение 10-30 мин, обрабатывают охлажденным до -20°С (или ниже) ацетоном в соотношении 1:6-1:8, высушивают осадок при комнатной температуре, растворяют в 0,005-0,015 М растворе трис-HCl+0,15 М NaCl, pH 6,0-8,0; хроматографируют на колонке с сефадексом G-50. Далее вводятся следующие этапы: собирают не одно, а два вещества: одно с молекулярной массой более 15000 Да и другое с молекулярной массой от 1400 до 15000 Да, обессоливают и лиофилизируют. Затем вводится этап рехроматографии: вещество с молекулярной массой более 15000 Да рехроматографируют на колонке с сефадексом G-50 в 0,005-0,015 М растворе трис-HCl+0,15 М NaCl, pH 6,0-8,0, собирают два вещества: одно с молекулярной массой более 15000 Да и второе с молекулярной массой от 1400 до 15000 Да, обессоливают и лиофилизируют. Вещество с молекулярной массой от 1400 до 15000 Да, полученное после рехроматографии, объединяют с тем же веществом, полученным после первой хроматографии.

Температура термоденатурации (75-85°С) и время термоденатурации подобраны таким образом, что нужное вещество остается в растворе, в то время как часть неактивного материала денатурирует. Центрифугирование при 5000-15000 g течение 10-30 мин подобрано так, что в течение этого времени денатурированные белки удаляются. При центрифугировании ниже 5000 g и менее 10 мин часть денатурированного неактивного материала остается в супернатанте, что загрязняет препарат. Увеличивать скорость центрифугирования более 15000 g и время более 30 мин не имеет смысла, так как при этих условиях денатурированный материал полностью осаждается. Применение ацетона с температурой выше -20°С приводит к денатурации активного материала. Снижение соотношения супернатант:ацетон ниже 1:6 приводит к потере активного вещества. Увеличение соотношения выше 1:8 приводит к выпадению в осадок неактивного материала. Выбор концентрации буфера (0,005-0,015 М) и его рН (6,0-8,0) обусловлен тем, что в нем не происходит потери активности получаемого вещества, в то же время препарат хорошо разделяется по молекулярным массам на сефадексе G-50. Хлористый натрий до концентрации 0,15 М добавляют к буферу для того, чтобы можно было определять активность веществ в пробах сразу после разделения на сефадексе.

Влияние веществ на пролиферацию эпидермоидных клеток карциномы человека А431 в культуре определяли флуоресцентным методом. Выращивали линию эпидермоидных клеток карциномы человека А431 на среде DMEM с сывороткой эмбрионов коров и стандартным набором антибиотиков в стандартных условиях (5). Определение количества клеток в процессе культивирования проводили в камере Горяева по стандартной методике с красителем трипановым синим для одновременного подсчета процента жизнеспособных клеток. Аликвоты суспензии клеток разливали в 24-луночный планшет с покровными стеклами по 300 мкл в лунку. Клетки инкубировали в течение 7 часов для полного прикрепления к поверхности стекла. Лиофилизированные вещества растворяли в среде DMEM и добавляли в лунки с клетками до конечной концентрации 100 мкг/мл. В контрольные образцы добавляли аликвоту среды DMEM без веществ. Инкубировали клетки с фракциями в течение 48 часов. Стекла с клетками дважды отмывали PBS и фиксировали в 4% параформальдегиде в течение 16 часов. Окраску осуществляли йодидом пропидия. Съемку образцов проводили на конфокальном флуоресцентном микроскопе Nikon Eclipse E800. Определяли количество клеток в образцах в программе ImageJ. В контроле проанализировано 4 образца, в каждом опыте - по 2 образца. В каждом образце оценено в среднем около 3 тысяч клеток. Рассчитывали среднее значение количества клеток в опытных пробах и контрольных пробах. Результаты выражали как процент выросших клеток по отношению к контролю по формуле

где А - процент выросших клеток по отношению к контролю;

Ко - средняя арифметическая количества клеток в присутствии вещества (опыт);

Кк - средняя арифметическая количества клеток в отсутствии вещества (контроль).

Для вещества с молекулярной массой более 15000 Да рассчитывали процент ингибирования пролиферации по формуле:

Б=100-А

где Б - процент ингибирования пролиферации;

А - процент выросших клеток по отношению к контролю.

В табл.1 представлено сравнение влияния вещества с молекулярной массой более 15000 Да, полученного по прототипу и заявляемому способу, на пролиферацию эпидермоидных клеток карциномы человека А431. Как видно из этих данных, вещество с молекулярной массой более 15000 Да, получаемое по прототипу, ингибирует пролиферацию на 39%, в то время как вещество, получаемое по заявляемому способу, ингибирует пролиферацию на 49%.

Таким образом, заявляемый способ позволяет увеличить активность вещества с молекулярной массой более 15000 Да на 10%.

В табл.2 представлены выход и активность вещества с молекулярной массой от 1400 до 15000 Да, полученного по прототипу и заявляемому способу. Как видно из представленных данных, вес вещества, получаемого по прототипу, составляет 18 мг, в то время как вес вещества, получаемого по заявляемому способу, составляет 26 мг, при этом активность вещества увеличилась на 8%.

Таким образом, введение этапа рехроматографии позволило увеличить выход вещества с молекулярной массой от 1400 до 15000 Да в 1,4 раза, при этом активность вещества увеличилась на 8%. Суммируя результаты, можно сказать, что заявляемый способ позволяет увеличить выход вещества с молекулярной массой от 1400 до 15000 Да в 1,4 раза и увеличить активность обоих веществ.

Было определено содержание белка по методу Лоури (6) и биуретовым методом (7), углеводов с антроновым реактивом (8) и РНК по методу Шмидта и Таннгаузера (9) в веществе №1 (В1) с молекулярной массой более 15 кДа и веществе №2 (В2) с молекулярной массой от 1,4 до 15 кДа, полученных по прототипу и заявляемому способу. Данные представлены в табл.3 и 4.

Как видно из данных, представленных в табл.3, содержание белка, определенного как методом Лоури, так и биуретовым методом, содержание углеводов и РНК в веществе №1 с молекулярной массой более 15 кДа, полученном как по прототипу, так и по заявляемому способу, достоверно не отличается между собой (Р<0,95 для всех веществ).

Как видно из данных, представленных в табл.4, содержание белка, определяемого как методом Лоури, так и биуретовым методом, содержание углеводов и РНК в веществе №2 с молекулярной массой от 1,4 до 15 кДа, полученном как по прототипу, так и по заявляемому способу, достоверно не отличается между собой (Р<0,95 для всех веществ).

Вещества анализировались методом вертикального двуступенчатого электрофореза в полиакриламидном геле в присутствии додецилсульфата натрия (ДСН-ПААГ) по Лэммли (10). После проведения электрофореза гель окрашивался красителем Кумасси голубым R-350 на белок. Данные представлены на рис.1 и рис.2.

Как видно из данных, представленных на рис.1, после ДСН-электрофореза в 6-15% ПААГ и окраски на белок в веществе №1 с молекулярной массой более 15 кДа, полученном как по прототипу (В1П), так и по заявляемому методу (В1З), выявляется один мажорный белок с молекулярной массой 58 кДа и до 8 минорных белков с м.м. от 20 до 200 кДа.

Как видно из данных, представленных на рис.2, после ДСН-электрофореза в 6-20% ПААГ и окраски на белок в веществе №2 с молекулярной массой от 1,4 до 15 кДа, полученном как по прототипу (В2П), так и по заявляемому методу (В2З), выявляются пять мажорных белков с м.м. 6,9; 8,4; 11; 12 и 61 кДа и до 7 минорных белков с м.м. от 14 до 130 кДа.

Таким образом, можно заключить, что вещества №1 с молекулярной массой более 15 кДа, полученные как по прототипу, так и по заявляемому способу, не отличаются между собой по содержанию белка, углеводов, РНК и по данным ДСН-электрофореза в полиакриламидном геле. Однако, как следует из результатов изобретения, вещество №1, полученное по заявляемому способу, ингибирует пролиферацию эпидермоидных клеток карциномы человека А431 на 49%, что на 10% больше по сравнению с прототипом.

Вещества №2 с молекулярной массой от 1,4 до 15 кДа, полученные как по прототипу, так и по заявляемому способу, также не отличаются между собой по содержанию белка, углеводов, РНК и по данным ДСН-электрофореза в полиакриламидном геле. Однако, как следует из результатов изобретения, под действием вещества №2, полученного по заявляемому способу, процент выросших клеток составляет 178%, что на 8% больше по сравнению с прототипом. Кроме того, выход вещества №2 составляет 26 мг. Это в 1,4 раза больше по сравнению с прототипом.

Пример 1 (прототип)

Кожу свиньи измельчают ножницами и гомогенизируют в 0,14 М растворе NaCl pH 7,0 при 4°С (1094 Homogenizer, Tecator, Sweden). На 120 г кожи берут 720 мл 0,14 М раствора NaCl (соотношение вес кожи:объем раствора - 1:6). Гомогенат центрифугируют при 2500g в течение 30 мин при 4°С (центрифуга J-6M/E, ротор 4.2, Beckman, Великобритания). Осадок отбрасывают, а супернатант в объеме 710 мл подвергают термоденатурации при 75°С в течение 20 мин на водяной бане при постоянном перемешивании, смесь охлаждают до 4°С. Денатурированный материал осаждают центрифугированием при 10000g в течение 20 мин при +4°С (центрифуга J2-21М, ротор JA-14, Beckman, США), а супернатант в объме 700 мл прикапывают к ацетону, охлажденному до -20°С. Выпавший осадок отмывают ацетоном путем центрифугирования при 2500g в течение 15 мин при 4°С и высушивают под тягой при комнатной температуре. В результате получают 300 мг порошка (300±30 мг), который растворяют в 30 мл 0,01 М раствора трис-HCl буфера + 0,15 М NaCl рН 8,0 при комнатной температуре. Нерастворимую часть удаляют центрифугированием при 4000g в течение 30 мин при 4°С, а супернатант наносят на колонку 2,5×80 см с Сефадексом G-50, уравновешенную тем же буфером. Собирают два вещества: одно с молекулярной массой более 15000 Да, а другое с молекулярной массой от 1400 до 15000 Да, обессоливают и лиофилизируют.

Вещество с молекулярной массой более 15000 Да ингибирует пролиферацию эпидермоидных клеток карциномы человека А431 на 39% (табл.1). Выход вещества с молекулярной массой от 1400 до 15000 Да составляет 18 мг, процент выросших клеток составляет 170% (табл.2).

Пример 2 (по предлагаемому методу)

Кожу свиньи измельчают ножницами и и гомогенизируют в 0,14 М растворе NaCl рН 7,0 при 4°С (1094 Homogenizer, Tecator, Sweden). На 120 г кожи берут 720 мл 0,14 М раствора NaCl (соотношение вес кожи:объем раствора - 1:6). Гомогенат центрифугируют при 2500g в течение 30 мин при 4°С (центрифуга J-6M/E, ротор 4.2, Beckman, Великобритания). Осадок отбрасывают, а супернатант в объеме 710 мл подвергают термоденатурации при 75°С в течение 20 мин на водяной бане при постоянном перемешивании, смесь охлаждают до 4°С. Денатурированный материал осаждают центрифугированием при 10000g в течение 20 мин при +4°С (центрифуга J2-21М, ротор JA-14, Beckman, США), а супернатант в объеме 700 мл прикапывают к ацетону, охлажденному до -20°С. Выпавший осадок отмывают ацетоном путем центрифугирования при 2500g в течение 15 мин при 4°С и высушивают под тягой при комнатной температуре. В результате получают 300 мг порошка (300±30 мг), который растворяют в 30 мл 0,01 М раствора трис-HCl буфера +0,15 М NaCl pH 8,0 при комнатной температуре. Нерастворимую часть удаляют центрифугированием при 4000g в течение 30 мин при 4°С, а супернатант наносят на колонку 2,5×80 см с Сефадексом G-50, уравновешенную тем же буфером. Собирают два вещества: одно с молекулярной массой более 15000 Да, а другое с молекулярной массой от 1400 до 15000 Да, обессоливают и лиофилизируют.

Затем вещество с молекулярной массой более 15000 Да растворяют в 30 мл 0,01 М раствора трис-HCl буфера +0,15 М NaCl pH 8,0 при комнатной температуре и наносят на колонку 2,5×80 см с Сефадексом G-50, уравновешенную тем же буфером. Собирают два вещества: одно с молекулярной массой более 15000 Да, а другое с молекулярной массой от 1400 до 15000 Да, обессоливают и лиофилизируют. Вещество с молекулярной массой от 1400 до 15000 Да объединяют с веществом с той же молекулярной массой, полученным после первой хроматографии.

Вещество с молекулярной массой более 15000 Да ингибирует пролиферацию эпидермоидных клеток карциномы человека А431 на 49%. Это на 10% больше по сравнению с прототипом (табл.1). Выход вещества с молекулярной массой от 1400 до 15000 Да составляет 26 мг. Это в 1,4 раза больше по сравнению с прототипом. Процент выросших клеток составляет 178%, это на 8% больше по сравнению с прототипом (табл.2).

Таблица 1
Влияние вещества с молекулярной массой более 15000 Да на пролиферацию эпидермоидных клеток карциномы человека А431
% выросших клеток (М±m) % ингибирования пролиферации
Прототип 61±5,1 39
Заявляемый метод 51±4,2 49
М - средняя арифметическая; m - стандартная ошибка средней арифметической

Таблица 2
Выход вещества с молекулярной массой от 1400 до 15000 Да и его влияние на пролиферацию эпидермоидных клеток карциномы человека А431
Вес вещества в мг (М±m) % выросших клеток (M±m)
Прототип 18±4,2 170±4,2
Заявляемый метод 26±7,4 178±5,5
M - средняя арифметическая; m - стандартная ошибка средней арифметической

Таблица 3
Процентное содержание белка, углеводов и РНК в веществе №1 (В1) с молекулярной массой более 15 кДа, полученном по прототипу и заявляемому способу (М±m)
% (М±m)
Прототип Заявляемый способ
Белок (метод Лоури) 91±2,9 93±4,1
Белок (биуретовый метод) 87±7,3 89±6,8
Углеводы 0,74±0,30 0,81±0,42
РНК 2,0±0,4 2,2±0,5
М - средняя арифметическая; m - стандартная ошибка средней арифметической

Таблица 4
Процентное содержание белка, углеводов и РНК в веществе №2 (В2) с молекулярной массой от 1,4 до 15 кДа, полученном по прототипу и заявляемому способу (М±m)
% (М±m)
Прототип Заявляемый способ
Белок (метод Лоури) 51±3,2 53±5,3
Белок (биуретовый метод) 56±6,0 55±7,2
Углеводы 8,0±1,4 8,3±1,7
РНК 5,4±1,0 5,1±1,8
М - средняя арифметическая; m - стандартная ошибка средней арифметической

Литература

1. Белова О.В., Арион В.Я., Зимина И.В., Сысоева О.Б., Луканидина Т.А. Способ получения иммунотропных веществ из кожи свиньи. Патент №2203070. Зарегистрирован 27.04.2003 г. БИ №12, 2003.

2. Белова О.В., Арион В.Я., Орлова В.Ф., Лопухин Ю.М., Капитанов А.Б., Короткова М.Н., Бондарева Е.В. Иммунотропные препараты из кожи влияют на пролиферацию эпидермоидных клеток карциномы А431. Иммунопатология аллергол. инфектол. 2003, №1, с.28-32.

3. Арион В.Я., Белова О.В., Орлова В.Ф., Капитанов А.Б., Лопухин Ю.М. Способ получения вещества из кожи свиньи, влияющего на пролиферацию и дифференцировку кератиноцитов человека. Патент №2038087. Зарегистрирован 27.06.1995. БИ №18. С.24, 1995.

4. Арион В.Я., Белова О.В., Луканидина Т.А., Сысоева О.Б.,. Дворцова В.В., Бреусов Ю.Н. Иммунологические свойства препаратов из кожи. // Бюлл. экспер. биол. мед. - 2000. - Т.129. - №2. - С.194-197.

5. Beretta GL, Gatti L, Tinelli S, Corna E, Colangelo D, Zunino F, Perego P. Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochem Pharmacol. 2004 Jul 15; 68(2):283-91.

6. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951. - Vol.193. - P.265-275.

7. Gornall A.C., Bardawill C.J., David M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. - 1949. - Vol.177. - P.751-766.

8. Seifter S. A method for the detection of carbo-hydrates by the anthrone reagent. Arch. Biochem. 1950. - Vol.25. - P.191-193.

9. Schmidt G., Tannhauser S.J. A method for the detection of desoxyribonucleic acid, ribonucleic acid and phosphoproteins in animal tissues. J. Biol. Chem. 1945. - Vol.161. - P.83-89.

10. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; Vol.227: 680-5.

Способ получения веществ, влияющих на пролиферацию эпидермоидных клеток карциномы человека А431, включающий измельчение, гомогенизацию кожи в растворе хлористого натрия, ценгрифугирование, термоденатурацию сунернатанта при 75-85°С в течение 10-20 мин, охлаждение смеси до 4°С, центрифугирование денатурированного материала при 5000-15000 g в течение 10-30 мин, обработку охлажденным до -20°С или ниже ацетоном в соотношении 1:6-1:8, отмывку выпавшего осадка охлажденным ацетоном, высушивание при комнатной температуре, растворение осадка в 0,005-0,015 М растворе трис-НСl+0,15 М NaCl, pH 6,0-8,0 и центрифугирование, с последующей хроматографией на колонке с сефадексом G-50 и сбором вещества целевого продукта с молекулярной массой от 1400 до 15000 Да, обессоливанием и лиофилизацией, отличающийся тем, что при хроматографии на колонке с сефадексом G-50 одновременно с веществом с молекулярной массой от 1400 до 15000 Да собирают вещество с молекулярной массой более 15000 Да, рехроматографируют вещество с молекулярной массой более 15000 Да на колонке с сефадексом G-50, после рехроматографии собирают два вещества: одно с молекулярной массой более 15000 Да и второе - с молекулярной массой от 1400 до 15000 Да, оба вещества обессоливают и лиофилизируют и вещество с молекулярной массой от 1400 до 15000 Да, полученное после рехроматографии, объединяют с веществом с той же молекулярной массой, полученным после первой хроматографии.
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, ВЛИЯЮЩИХ НА ПРОЛИФЕРАЦИЮ ЭПИДЕРМОИДНЫХ КЛЕТОК КАРЦИНОМЫ ЧЕЛОВЕКА А431
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВ, ВЛИЯЮЩИХ НА ПРОЛИФЕРАЦИЮ ЭПИДЕРМОИДНЫХ КЛЕТОК КАРЦИНОМЫ ЧЕЛОВЕКА А431
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
27.05.2015
№216.013.4f16

Способ обнаружения микобактерий туберкулёза генетического кластера beijing b0/w148

Изобретение относится к биотехнологии, а именно к способу идентификации микобактерий туберкулеза кластера Beijing B0/W148. Применяют полимеразную цепную реакцию для амплификации фрагментов ДНК М. tuberculosis с подобранными праймерами P1, Р2 и Р3, последовательности которых представлены SEQ ID...
Тип: Изобретение
Номер охранного документа: 0002551764
Дата охранного документа: 27.05.2015
27.08.2016
№216.015.50a5

Способ определения окислительной модификации фибриногена плазмы крови по содержанию карбонильных групп в фибриновом сгустке

Изобретение относится к области медицины, к клинико-биохимической лабораторной диагностике, а именно к методам определения модифицированных белков и предназначается для селективного количественного определения степени окисления фибриногена в клинических образцах плазмы крови по содержанию...
Тип: Изобретение
Номер охранного документа: 0002595806
Дата охранного документа: 27.08.2016
29.04.2019
№219.017.445f
Тип: Изобретение
Номер охранного документа: 0002452727
Дата охранного документа: 10.06.2012
Showing 1-10 of 10 items.
27.05.2015
№216.013.4f16

Способ обнаружения микобактерий туберкулёза генетического кластера beijing b0/w148

Изобретение относится к биотехнологии, а именно к способу идентификации микобактерий туберкулеза кластера Beijing B0/W148. Применяют полимеразную цепную реакцию для амплификации фрагментов ДНК М. tuberculosis с подобранными праймерами P1, Р2 и Р3, последовательности которых представлены SEQ ID...
Тип: Изобретение
Номер охранного документа: 0002551764
Дата охранного документа: 27.05.2015
27.08.2016
№216.015.50a5

Способ определения окислительной модификации фибриногена плазмы крови по содержанию карбонильных групп в фибриновом сгустке

Изобретение относится к области медицины, к клинико-биохимической лабораторной диагностике, а именно к методам определения модифицированных белков и предназначается для селективного количественного определения степени окисления фибриногена в клинических образцах плазмы крови по содержанию...
Тип: Изобретение
Номер охранного документа: 0002595806
Дата охранного документа: 27.08.2016
10.08.2018
№218.016.7b14

Способ получения галлата лантана lagao

Изобретение может быть использовано в химической промышленности, микроэлектронике и оптоэлектронике. Способ получения галлата лантана LaGaO со структурой перовскита включает осаждение раствором аммиака из смеси растворов нитратов лантана и галлия гидратированных оксидов лантана и галлия....
Тип: Изобретение
Номер охранного документа: 0002663736
Дата охранного документа: 09.08.2018
23.12.2018
№218.016.aa53

Вещество, необратимо угнетающее функции тромбоцитов

Изобретение относится к соединению общей формулы где R представляет собой насыщенную линейную или разветвленную углеводородную цепь атомов. Технический результат: получено новое соединение, которое характеризуется повышенной устойчивостью и может найти применение в медицине для угнетения...
Тип: Изобретение
Номер охранного документа: 0002675630
Дата охранного документа: 21.12.2018
04.04.2019
№219.016.fc13

Способ измерения средней длины волны узкополосного светового излучения

Изобретение относится к оптике и может быть использовано для определения средней длины волны узкополосного светового излучения без использования спектрального диспергирующего прибора, в том числе и при картировании распределения длины волны излучения по поверхности. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002390738
Дата охранного документа: 27.05.2010
29.04.2019
№219.017.416c

Вещество, угнетающее функции тромбоцитов

Изобретение относится к соединению общей формулы
Тип: Изобретение
Номер охранного документа: 0002382764
Дата охранного документа: 27.02.2010
29.04.2019
№219.017.445f
Тип: Изобретение
Номер охранного документа: 0002452727
Дата охранного документа: 10.06.2012
24.05.2019
№219.017.5efe

Способ получения индатов редкоземельных элементов p3эino

Изобретение относится к химии твердофазных превращений неорганических соединений, а именно к синтезу тройных соединений индатов редкоземельных элементов (РЗЭ) со структурой перовскита, и может быть использовано как в химической промышленности, так и в оптоэлектронике и микроэлектронике. Cпособ...
Тип: Изобретение
Номер охранного документа: 0002688606
Дата охранного документа: 21.05.2019
02.07.2019
№219.017.a2d0

Способ использования углеводородного газа и модульная компрессорная установка для его осуществления

Изобретение относится к нефтегазодобывающей промышленности, к системам сбора, подготовки и транспортировки низконапорного газа. Технический результат достигается за счет решения задач поддержания постоянного избыточного давления всасывания, распределением газовых потоков между оборудованием...
Тип: Изобретение
Номер охранного документа: 0002692859
Дата охранного документа: 28.06.2019
23.05.2020
№220.018.2012

Способ получения галлатов неодима ndgao, ndgao и ndgao

Изобретение относится к области твердофазных химических превращений неорганических веществ, а именно синтезу тройных соединений галлатов неодима, и может быть использовано в химической промышленности, микроэлектронике и оптоэлектронике. Способ получения галлатов неодима NdGaO, NdGaO и NdGaO...
Тип: Изобретение
Номер охранного документа: 0002721700
Дата охранного документа: 21.05.2020
+ добавить свой РИД