×
20.04.2013
216.012.3753

Результат интеллектуальной деятельности: СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА

Вид РИД

Изобретение

№ охранного документа
0002479716
Дата охранного документа
20.04.2013
Аннотация: Изобретение относится к определению коэффициента относительной проницаемости и смачиваемости формации. Техническим результатом является испытание забойной формации для определения относительной проницаемости в забойных условиях. Способ и инструмент, который воплощает способ, включающий в себя измерение вязкостей и скоростей течения текучих сред формации и получение отношения относительных проницаемостей текучих сред формации и смачиваемости формации с использованием этих вязкостей и скоростей течений текучих сред формации. 2 н. и 16 з.п. ф-лы, 5 ил.

Область техники изобретения

Настоящее изобретение в основном относится к описанию текучих сред формации в пласте-коллекторе и более конкретно относится к определению коэффициента относительной проницаемости формации и смачиваемости формации.

Уровень техники изобретения

Данные кабельного испытания формации являются основными для анализа и улучшения производительности пласта-коллектора, выполнения надежного прогнозирования и оптимизации разработки и обслуживания пласта-коллектора.

Знание коэффициента относительной проницаемости текучих сред формации может обеспечить более точное прогнозирование замещения нефти водой и, тем самым, производительности пласта-коллектора.

Смачиваемость также является очень важным параметром при разработке пласта-коллектора, поскольку она необходима для точного прогнозирования добычи. Смачиваемость оказывает сильное влияние на замещение нефти водой в нефтедобывающих месторождениях. Таким образом, точные прогнозы при разработке нефтяных и газовых месторождений зависят от допущений смачиваемости. В частности, во время начальной разработки пласта-коллектора, например, во время этапов разведочной скважины и/или оценочной скважины описание смачиваемости является одним из важных параметров, которые используются при разработке пласта-коллектора.

Измерение определенного индекса смачиваемости на месте с помощью доступных техник является сложным. Обычно является очень трудным описать или оценить смачиваемость формации, так что смачиваемость определяется косвенно посредством других свойств пласта-коллектора, которые влияют на смачиваемость, такие как относительная проницаемость, капиллярное давление или профиль водонасыщенности в переходной зоне.

Elshahawi и другие, в документе "Capillary Pressure and Rock Wettability Effects on Wireline Formation Tester Measurements", SPE S6712, описали способ измерения капиллярного давления по месту, из которого может быть сделано допущение о смачиваемости формации.

Freedman и другие, в документе "Wettability, Saturation, and Viscosity from NMR Measurements", SPE Journal, декабрь 2003, или Looyestijin и другие, в документе "Wettability Index Determination by Nuclear Magnetic Resonance", SPE 93624, также разработали теорию о выводе индекса смачиваемости из времени поперечной релаксации T2 в ЯМР, но, насколько известно изобретателю на настоящий момент, оно не было опробовано на месте.

Патент США №7032661 B2 описывает способ и устройство для комбинирования ядерного магнитного резонанса и испытания формации для оценки относительной проницаемости путем испытания формации и испытания методом ядерного магнитного резонанса.

Сущность изобретения

Способ и устройство в соответствии с настоящим изобретением относятся к определению на месте отношения относительных проницаемостей нефти и воды и смачиваемости породы с использованием испытания формации.

Способ в соответствии с настоящим изобретением включает в себя этапы выкачивания текучей среды формации из пласта-коллектора с использованием инструмента для испытания формации, такого как кабельный модульный динамический пластоиспытатель компании Шлюмберже, разделения компонентов текучей среды (воду и углеводороды) с использованием, например, но не ограничиваясь, насоса, измерения в режиме реального времени физических характеристик порций текучей среды с помощью инструментов скважинного анализа текучей среды в пластоиспытателе, и вычисления отношения относительных проницаемостей текучих сред формации и смачиваемости формации на основании измеренных характеристик текучих сред формации.

В соответствии с аспектом настоящего изобретения измеренные характеристики являются типом текучей среды, например вода или углеводород, вязкостью текучей среды и скоростью течения текучей среды.

В соответствии с другим аспектом настоящего изобретения, для эффективных результатов способ применяется к переходным зонам, где добываются и вода, и нефть.

Другие признаки и преимущества настоящего изобретения станут понятны из следующего описания изобретения, которое ссылается на прилагаемые чертежи.

Краткое описание чертежей

Фиг.1 иллюстрирует этапы способа в соответствии с настоящим изобретением.

Фиг.2A графически иллюстрирует значения относительной проницаемости, как функции водонасыщенности в формации.

Фиг.2B иллюстрирует рассчитанное отношение Kro/Krw как функцию водонасыщенности на основании данных из фиг.2A.

Фиг.3 схематически иллюстрирует инструмент для реализации способа в соответствии с настоящим изобретением.

Фиг.4 иллюстрирует пример измеренных значений для вязкости нефти/воды как функции времени.

Фиг.5 иллюстрирует пример каротажной диаграммы внутрискважинного анализа текучей среды, показывающей значение отношения порции нефти и порции воды.

Подробное описание изобретения

Целью настоящего изобретения является испытание забойной формации для определения относительной проницаемости в забойных условиях. Забой, как здесь понимается, означает место под землей в скважине.

В соответствии с одним аспектом настоящего изобретения, существующий инструмент для испытания формации, например модульный динамический пластоиспытатель компании Шлюмберже, и способы анализа текучей среды в забое, такие как, но не ограниченные ими, оптические измерения и измерения вязкости, используются для реализации способа в соответствии с настоящим изобретением.

В способе в соответствии с настоящим изобретением отношение относительных проницаемостей двух текучих сред формации, например нефть и вода, полученных в скважине, вычисляется с использованием измерений вязкости и скорости течения каждой текучей среды в режиме реального времени. Любой подходящий вискозиметр, например датчик скорости текучей среды DV-Rod компании Шлюмберже или кабельный вибрационный вискозиметр, может быть использован для измерения вязкости.

Закон Дарси связывает скорость течения текучей среды формации с ее относительной проницаемостью и вязкостью следующим образом:

где qφ является потоком фазы φ, k является абсолютной проницаемостью формации, k является относительной проницаемостью фазы φ, A является площадью поперечного сечения потока, VPφ является градиентом давления фазы φ.

Таким образом, для воды:

и для нефти.

Берем отношение между двумя потоками:

где ∇Pc является градиентом капиллярного давления. Следует отметить, что капиллярное давление определяется как Pc=Po-Pw. Предполагается, что градиент давления/перепад давления является достаточно большим для преодоления капиллярного давления, и, таким образом, им можно пренебречь в сравнении с ∇Pw. Уравнение упрощается до следующего:

Таким образом,

(Уравнение А)

То есть отношение относительной проницаемости одной текучей среды формации, например нефти, к относительной проницаемости другой текучей среды формации, например воды, может быть получено путем деления произведения скорости течения и вязкости одной текучей среды формации на произведение скорости течения и вязкости другой текучей среды формации.

Согласно показанному на фиг.1 способу в соответствии с вариантом осуществления настоящего изобретения, сначала получают образец текучей среды формации в интересующей зоне забоя на стадии S10 с использованием предпочтительно закачивания или тому подобное. Инструмент для испытания формации, например модульный динамический пластоиспытатель компании Шлюмберже (заявителя настоящей заявки), является подходящим для получения образца текучей среды формации. На фиг.3 схематически показан модульный динамический испытатель. Текучая среда формации (в частности, в переходной зоне пласта-коллектора) обычно включает в себя водную фазу и нефтяную фазу. Таким образом, на следующем этапе S12 водная фаза отделяется от нефтяной фазы. Затем выполняется анализ текучей среды в забое для каждой из разделенных текучих сред для определения того, является это водной фазой или нефтяной фазой. На стадии S14 анализа текучих сред также измеряется скорость течения каждой соответствующей текучей среды. Подходящим инструментов для выполнения анализа текучих сред на стадии S14 может быть инструмент анализа текучих сред компании Шлюмберже (заявитель настоящей заявки), который может включать в себя, например, оптические датчики, датчики плотности и вязкости. После идентификации каждой из разделенных текучих сред измеряется вязкость каждой текучей среды на стадии S16. В качестве альтернативы, вязкость каждой фазы текучей среды может быть вычислена на стадии S17. Затем определенная вязкость и определенная скорость течения каждой из текучих сред используется для расчета отношения относительных проницаемостей двух текучих сред на стадии S18 (то есть нефти и воды) с использованием Уравнения А, изложенного выше. Таким образом, смачиваемость определяется на стадии S20.

В соответствии с другим аспектом настоящего изобретения, смачиваемость формации может быть оценена с использованием рассчитанного отношения относительных проницаемостей текучих сред формации и водонасыщенности формации. Фиг.2А, воспроизведенная из документа "Toward Improved Prediction of Reservoir Flow Performance", Los Alamos, Number 1994, авторы Buckles и другие, графически иллюстрирует значения относительной проницаемости как функции водонасыщенности, значение водонасыщенности может быть использовано в соединении с рассчитанным отношением относительных проницаемостей текучих сред формации для определения смачиваемости формации.

Фиг.2А является иллюстрацией относительных проницаемостей воды и нефти. Такой график может быть выполнен для типичной категории породы, такой как песчаники и известняки. Из этого графика можно получить график, представленный на фиг.2B, который представляет отношение Kro к Krw как функцию водонасыщенности. Водонасыщенность может быть получена с помощью, например, электрического каротажа. Отношение Kro к Krw может быть получено, в соответствии с формулой A, при известном отношении скорости течения нефти и скорости течения воды, или, что эквивалентно, отношении объема нефти к объему воды за тот же период времени. Вязкость может быть непосредственно измерена в забое с использованием датчиков вязкости или любого другого датчика, который может дать вязкость в виде побочного продукта, или может быть рассчитана из уравнения состояний, при известном составе, давлении и температуре для нефти и при известной солености, давлении и температуре воды, или любым другим способом для определения вязкости воды и нефти, или непосредственно их отношения. Зная водонасыщенность и отношение Kro к Krw, можно описать тенденцию к смачиванию породы. Например (показано на фиг.2B), если имеется водонасыщенность 0,44 и отношение Kro к Krw равно 5, график является близким к "гидрофильной кривой", показывающей сильную гидрофильную тенденцию.

Способ в соответствии с настоящим изобретением может быть воплощен с использованием скважинного инструмента для испытания формации. На фиг.3 показан скважинный инструмент для испытания формации в соответствии с одним вариантом осуществления, который включает в себя уплотнительный зонд 204 для установления сообщения между формацией 200 пласта-коллектора и входным отверстием канала в скважине 202, модуль 205 зонда для управления зондом 204 и установки его на требуемую глубину, модуль 206 сепаратора, модуль 207 анализа скважинного текучей среды, модуль 208 насоса и перемещающее средство 201 инструмента для испытания формации, которое может быть кабелем, ударной штангой, насосно-компрессорной трубой, добывающей трубой или другим известным механизмом для размещения скважинного инструмента для испытания формации. Конфигурация модуля не ограничена предыдущим описанием, и порядок модулей может быть изменен или могут быть добавлены другие модули. В некоторых случаях модуль 208 насоса может быть использован в качестве сепаратора, когда в сепараторе нет необходимости. В таком случае модуль 208 насоса будет расположен в позиции сепаратора 206.

Следует отметить, что инструмент в соответствии с изложенным выше вариантом осуществления является разновидностью кабельного инструмента. Следует, однако, отметить, что инструмент, транспортируемый с помощью трубы, находится в объеме настоящего изобретения. Способ в соответствии с настоящим изобретением, таким образом, может быть применен в буровых и измерительных приложениях к испытанию, завершению, каротажу при добыче, постоянному анализу текучей среды и, в общем, к любому способу, относящемуся к скважинным измерениям смачиваемости.

Модуль анализа скважинной текучей среды должен включать в себя, по меньшей мере, возможность различения воды и нефти (такой как, но не ограниченный им, оптический дифференциатор), датчик вязкости и измеритель потока. В одном предпочтительном варианте осуществления поток может быть измерен непосредственно в насосе.

Способ может быть использован, но не ограничен, или с кабельными инструментами для испытания формации, такими как модульный динамический пластоиспытатель, поставляемый заявителем настоящего изобретения. Таким образом, способ в соответствии с настоящим изобретением может быть применен в буровых и измерительных приложениях, к испытанию, завершению, каротажу при добыче, постоянному анализу текучей среды и, в общем, к любому способу, относящемуся к скважинным измерениям смачиваемости.

Процедура испытания формации для определения отношения относительных проницаемостей может быть следующей. Транспортируемый инструмент 203 для испытания формации располагается на требуемой глубине в скважине 202 на глубине интересующей формации 200. Зонд 204, управляемый модулем 205 зонда, приводится в действие для создания уплотнения между скважиной и формацией для создания сообщения между скважиной и каналом инструмента. После установления уплотнения текучая среда формации закачивается с использованием модуля 208 насоса через канал инструмента. Водная и нефтяная фазы текучей среды формации разделяются в сепараторе, который может быть, например, модулем 206 сепаратора или самим модулем 208 насоса. Порции текучих сред, воды и нефти затем направляются в модуль 207 анализа скважинной текучей среды, где они идентифицируются либо как вода, либо как нефть, определяется их вязкость и измеряются их скорости течения. Вязкость может быть измерена, например, с помощью вибрационного кабельного датчика или датчика DV-Rod, который может быть реализован в кабельных испытателях формации. Другое средство и способы для определения вязкости (измерение и/или расчет) могут быть применены без отклонения от объема и сущности настоящего изобретения.

Фиг.4 иллюстрирует лабораторное измерение (стандарт S20 вязкости) порций воды и нефти с помощью вибрационного проводного датчика. Скорость течения может быть также измерена с помощью перекачиваемого объема и относительная скорость течения нефти и воды может быть определена из относительных объемов нефти и воды. Зная скорости течения и вязкости обеих фаз, можно определить отношение относительных проницаемостей с использованием описанного выше уравнения, например уравнения А. Смачиваемость формации может быть определена с использованием отношений, изложенных на фиг.2.

Обращаясь к фиг.5, следует отметить, что внутри узкого канала испытателя формации можно предположить одинаковые скорости течения порции нефти и течения порции воды. Таким образом, наблюдаемое отношение объемов порций нефть/вода равно отношению скоростей течения нефти/воды.

В одном варианте осуществления способ в соответствии с настоящим изобретением может быть применен в переходной зоне, где присутствуют фазы воды и нефти. Чтобы характеристики формации были типичными, все эти измерения должны быть выполнены в установившемся потоке.

Следует дополнительно отметить, что способ в соответствии с настоящим изобретением может быть применен на ранних стадиях добычи и повторен во время всего жизненного цикла пласта-коллектора.

Несмотря на то, что настоящее изобретение было описано в отношении конкретных вариантов его осуществления, многие другие вариации и изменения и другие использования станут понятны специалистам в данной области техники. Предпочтительно, таким образом, что настоящее изобретение было ограничено не конкретным изложением, но только прилагаемой формулой изобретения.


СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
СПОСОБ ДЛЯ РАСЧЕТА ОТНОШЕНИЯ ОТНОСИТЕЛЬНЫХ ПРОНИЦАЕМОСТЕЙ ТЕКУЧИХ СРЕД ФОРМАЦИИ И СМАЧИВАЕМОСТИ СКВАЖИННОЙ ФОРМАЦИИ И ИНСТРУМЕНТ ДЛЯ ИСПЫТАНИЯ ФОРМАЦИИ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА
Источник поступления информации: Роспатент

Showing 191-200 of 324 items.
25.08.2017
№217.015.aa29

Управление с обратной связью положением отклонителя в ходе бурения

Изобретение относится к средствам обеспечения проводки скважины при операциях направленного бурения. В частности, предложен скважинный отклоняющий инструмент, содержащий: корпус скважинного отклоняющего инструмента; отклоняющий механизм для управления направлением бурения подземного ствола...
Тип: Изобретение
Номер охранного документа: 0002611806
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.ab45

Взрывчатая гранула

Группа изобретений относится к горному делу и может быть применена в гидравлическом разрыве пласта. Описывается взрывчатая гранула для описания разлома в подземном пласте. Гранула может содержать корпус, содержащий детонирующее вещество и взрывчатое вещество, расположенные внутри корпуса....
Тип: Изобретение
Номер охранного документа: 0002612177
Дата охранного документа: 02.03.2017
25.08.2017
№217.015.ae49

Скважинное размещение оптического волокна для сейсмических исследований

Изобретение относится к области геофизики и может быть использовано в процессе сейсмических исследований. Предложено скважинное размещение оптического волокна для сейсмических исследований. Реализации данного изложения изобретения могут включать способы размещения датчика, распределенного по...
Тип: Изобретение
Номер охранного документа: 0002612957
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.ae92

Способ улучшения закупоривания волокнами

Изобретение относится к способу блокирования потока масляно-водной текучей среды с соотношением вода:масло, равным 70:30, через по меньшей мере один проход в подземной формации, через которую проходит ствол скважины, в котором осуществляют: (i) выбор композиций, концентраций и размеров...
Тип: Изобретение
Номер охранного документа: 0002612765
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aff2

Статоры для забойных двигателей, способы их изготовления и забойные двигатели с ними

Группа изобретений относится к области бурения. Способ изготовления статора для забойного двигателя, содержащего трубу статора, включающую в себя внутреннюю поверхность и имеющую совокупность шлицев, проходящих внутрь от внутренней поверхности; вставку статора, выполненную из отвержденного...
Тип: Изобретение
Номер охранного документа: 0002611125
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.b0e0

Метод закачки для отбора проб тяжелой нефти

Изобретение относится к способу отбора проб углеводородов пониженной вязкости. Техническим результатом является снижение падения давления между искусственно образованными разрывами, пустотой и скважинным инструментом, когда смесь закачиваемой жидкости и нефти пониженной вязкости втягивается в...
Тип: Изобретение
Номер охранного документа: 0002613373
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b1b4

Способ получения характеристик углеводородных пласт-коллекторов

Методология для выполнения отбора образцов флюидов в скважине, проходящей пласт-коллектор, и флюидного анализа образов флюидов для определения их свойств (включая содержание асфальтенов). Используется по меньшей мере одна модель для прогнозирования содержания асфальтенов как функции участка в...
Тип: Изобретение
Номер охранного документа: 0002613214
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b29a

Автоматическая оценка скважинного исследования

Изобретение относится к средствам исследования скважин. Техническим результатом является повышение точности получения данных исследований. Предложен способ автоматической оценки данных скважинного исследования подземного ствола скважины, включающий прием измеренных значений скважинного...
Тип: Изобретение
Номер охранного документа: 0002613688
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b381

Скважинный перфоратор с интегрированным инициирующим устройством

Группа изобретений относится к области прострелочно-взрывных работ. Устройство для перфорации скважин содержит по меньшей мере один перфорационный заряд; инициирующее устройство, которое содержит баллистическую цепь, приспособленную для поджигания по меньшей мере одного перфорационного заряда,...
Тип: Изобретение
Номер охранного документа: 0002613648
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b66f

Система и способ определения исправности бурового оборудования

Изобретение относится к измерительной технике и может быть использовано для определения исправности бурового оборудования. Описывается система и способ определения исправности бурового оборудования. Способ включает тепловой анализ по меньшей мере части одного из элементов бурового оборудования...
Тип: Изобретение
Номер охранного документа: 0002614653
Дата охранного документа: 28.03.2017
Showing 191-200 of 236 items.
13.01.2017
№217.015.8ee5

Устройство и способ регулирования или ограничения орбиты ротора в винтовых двигателях или насосах

Группа изобретений относится к области бурения, а именно к гидравлическим приводам для вращательного бурения, размещаемым в скважине. Компоновка гидравлического забойного двигателя содержит винтовой двигатель, имеющий ближний конец и дальний конец и содержащий статор и ротор. Статор содержит...
Тип: Изобретение
Номер охранного документа: 0002605475
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f75

Способы и устройство увеличения расстояния перемещения гибких труб

Группа изобретений относится к способам и устройству перемещения стержня или трубы внутри цилиндра. Технический результат - увеличение расстояния перемещения гибких труб посредством отсрочки возникновения скручивания. Способ отсрочки возникновения скручивания удлиненной структуры, которая...
Тип: Изобретение
Номер охранного документа: 0002605104
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.90b8

Гетерогенное размещение проппанта в гидроразрыве пласта с наполнителем из удаляемого экстраметрического материала

Группа изобретений относится к горному делу и может быть применена для гетерогенного размещения проппанта в трещине гидравлического разрыва. Способ включает закачку первой жидкости для обработки, содержащей газ и по существу лишенной макроскопических частиц, через ствол скважины под давлением,...
Тип: Изобретение
Номер охранного документа: 0002603990
Дата охранного документа: 10.12.2016
24.08.2017
№217.015.9554

Приемник нейтронного излучения на основе сцинтиллятора, содержащего эльпасолит, предназначенный для применения на нефтяных месторождениях

Использование: для регистрации нейтронов с использованием эффекта сцинтилляции в скважинах и других областях применения на нефтяных месторождениях. Сущность изобретения заключается в том, что выполняют позиционирование в скважине, по меньшей мере, одного сцинтиллятора, содержащего эльпасолит,...
Тип: Изобретение
Номер охранного документа: 0002608614
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9ecf

Устройство и способ установления фазового равновесия со считыванием показаний на месте

Группа изобретений относится к термодинамическим исследованиям нефтяных месторождений на основе измерения термодинамических свойств пластовых флюидов. Представлен способ для измерения термодинамических свойств пластовых флюидов, включающий: компоновку модульного сенсорного блока для оценки...
Тип: Изобретение
Номер охранного документа: 0002606256
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.9ed6

Телеметрическое оборудование для систем с многофазным электрическим двигателем

Группа изобретений относится к системе электрического погружного насоса. Система содержит многофазный электрический двигатель, функционально связанный с гидравлическим насосом, причем двигатель содержит точку соединения звездой; схему телеметрии, функционально связанную с точкой соединения...
Тип: Изобретение
Номер охранного документа: 0002606034
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a4c8

Цанговое соединение для валов электроцентробежных погружных насосов

Группа изобретений относится к приспособлению и способам соединения валов электроцентробежного погружного насоса. Приспособление содержит соединительную муфту (102), полый трубчатый элемент муфты (102) для размещения в нем концов каждого из двух вращающихся валов (106, 106’), по меньшей мере...
Тип: Изобретение
Номер охранного документа: 0002607927
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a653

Многоствольная система y-блока

Группа изобретений относится к многостволовым скважинам. Технический результат – снижение вероятности утечки, коррозии и повреждения оборудования в боковых стволах. Система для применения в многоствольной скважине содержит многоствольный скважинный комплект, размещенный в многоствольной...
Тип: Изобретение
Номер охранного документа: 0002608375
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.a674

Неоднородное размещение проппанта с удаляемым экстраметрическим материалом-наполнителем в гидроразрыве пласта

Группа изобретений относится к интенсификации скважин, вскрывающих подземные пласты, а более конкретно к гидроразрывной интенсификации с помощью введения в гидроразрыв проппанта для формирования зон с низким сопротивлением для добычи углеводородов. Технический результат – повышение...
Тип: Изобретение
Номер охранного документа: 0002608372
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.aa29

Управление с обратной связью положением отклонителя в ходе бурения

Изобретение относится к средствам обеспечения проводки скважины при операциях направленного бурения. В частности, предложен скважинный отклоняющий инструмент, содержащий: корпус скважинного отклоняющего инструмента; отклоняющий механизм для управления направлением бурения подземного ствола...
Тип: Изобретение
Номер охранного документа: 0002611806
Дата охранного документа: 01.03.2017
+ добавить свой РИД