×
20.04.2013
216.012.366e

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в неорганической химии. Способ управления процессом получения хлористого калия путем изменения входного потока воды включает регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды, расчет концентрации насыщения раствора по хлористому натрию. Дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния. По полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора. Изобретение позволяет корректировать процесс кристаллизации хлористого калия путем ввода дополнительного количества воды в условиях возврата на установки вакуум-кристаллизации суспензии мелкокристаллического хлорида калия в охлажденном маточном щелоке. 1 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к технике управления процессом получения хлористого калия при формировании раствора вводом воды в осветленный насыщенный раствор, поступающий со стадии растворения сильвинитовых руд и осветления жидкой фазы, на установках вакуум-кристаллизации.

Известен способ управления процессом получения хлористого калия, стабилизирующий содержание хлористого калия в продукте путем изменения расхода слабого раствора солей в глинистый шлам и горячий насыщенный щелок - см. а.с. СССР №463633, кл. C01D 3/04, опубл. в 1973 г. Данный способ управления неприемлем в условиях работы установок вакуум-кристаллизации (ВКУ) с возвратом суспензии мелкодисперсного кристаллизата хлористого калия в охлажденном на ВКУ маточном щелоке в голову процесса кристаллизации, так как при охлаждении жидкой фазы суспензии кристаллизуется смесь хлористого калия и хлористого натрия за счет испарения воды.

Известен способ управления процессом получения хлористого калия путем изменения расходов входных потоков - см. а.с. №948884, кл. C01D 3/04, G05D 27/00, опубл. 07.08.82. Бюл. №20.

Способ предусматривает стабилизацию содержания хлористого калия путем регулирования расхода воды в поступающий на кристаллизацию раствор в зависимости от температуры этого раствора и концентрации в нем хлористого калия. Известный способ также не предусматривает управления расходом воды, которую необходимо дополнительно подавать в условиях возврата в голову процесса суспензии мелкодисперсного хлористого калия, образующегося на стадии выделения целевого продукта после ВКУ.

Известен способ управления процессом получения хлористого калия путем изменения входного потока воды, включающий регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды по приведенным в способе зависимостям и расчет концентрации насыщения раствора по хлористому натрию - прототип см. патент РФ 2406695 от 04.12.2008 г., кл. C01D 3/04, G05D 27/00, опубл. 20.12.2010. Бюл. №35.

Предложенный способ также не предусматривает корректировку управления расходом воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия, образующегося при гидроклассификации готовой суспензии хлористого калия из корпусов ВКУ с выделением целевого продукта. Возврат жидкой фазы суспензии на ВКУ путем ее смешения с поступающим на кристаллизацию горячим осветленным раствором приведет к ее нагреву, а при охлаждении на ВКУ из этой жидкой фазы происходит кристаллизация хлористого натрия за счет испарения воды под вакуумом в процессе охлаждения, что может привести к получению некондиционного целевого продукта.

Задачей предлагаемого изобретения является корректировка управления процессом кристаллизации хлористого калия вводом дополнительного количества воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе.

Поставленная задача достигается тем, что в отличие от известного способа, включающего регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды и расчет концентрации насыщения раствора по хлористому натрию, по предлагаемому способу дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния, по полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора по следующей зависимости:

,

где - расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора, т;

GM - расход маточного раствора, т;

t2 - температура охлажденного маточного раствора, °С;

t1 - температура маточного раствора, нагретого за счет смешения с горячим раствором, поступающим на кристаллизацию, °С;

φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С.

Расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом , определяется зависимостью:

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т Н2О, при насыщении раствора по хлористому калию, определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т H2O.

Другим отличием способа является то, что при необходимости ввода в кристаллизат хлористого натрия расход воды уменьшают от вычисленного значения, а расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода.

Сущность способа управления процессом получения хлористого калия как технического решения заключается в следующем.

В отличие от известного способа управления процессом получения хлористого калия путем изменения входного потока воды, включающего регулировку расхода воды в поступающий на кристаллизацию раствор в зависимости от расхода и температуры раствора, концентрации в нем хлористого калия, хлористого магния и хлористого натрия, расчет расхода воды в поступающий на кристаллизацию раствор с подачей вычисленных значений в систему управления расходом воды по приведенным в способе зависимостям и расчет концентрации насыщения раствора по хлористому натрию, по предлагаемому способу дополнительно измеряют расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию горячий раствор, его температуру и содержание в нем хлористого магния, по полученным параметрам рассчитывают расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора по следующей зависимости:

,

где - расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора, т;

GM - расход маточного раствора, т;

t2 - температура охлажденного маточного раствора, °С;

t1 - температура маточного раствора, нагретого за счет смешения с горячим раствором, поступающим на кристаллизацию, °С;

φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С.

Расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом , определяется зависимостью:

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т H2O, при насыщении раствора по хлористому калию, определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т Н2О.

При необходимости ввода в кристаллизат хлористого натрия расход воды уменьшают от вычисленного значения, а расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода.

Как показывает практика, на действующих галургических обогатительных фабриках в жидкой фазе, образующейся после выделения из нее кристаллизата - хлористого калия, полученной на установках вакуум-кристаллизации (ВКУ) (см., например, Горный журнал №8, 2007 www.rudmet.ru 1SS №0017-2278, с.25-30) остается до 10% от общего расхода твердой фазы - мелкодисперсного целевого продукта. Возврат такой жидкой фазы на стадию растворения сильвинитовой руды приводит к уменьшению емкости растворяющего раствора по KCl и, как следствие, к увеличению объема циркулирующего раствора в цикле: растворение-кристаллизация, а также к повышению энергозатрат на нагрев растворов, их охлаждение и транспортировку. В связи с этим в последнее время на калийных предприятиях вводят в эксплуатацию установки для дополнительного извлечения мелкодисперсного хлористого калия из охлажденного на ВКУ маточного раствора после выделения из него целевого продукта. Для этой цели используют операцию гидроклассификации, например, с применением пластинчатых сгустителей. Слив сгустителей направляют на нагрев, а затем на растворение сильвинитовой руды, а сгущенную суспензию с отношением жидкого к твердому (Ж:Т), равным ~1,0-2,5 - на ВКУ для формирования раствора вводом воды в осветленный насыщенный раствор, поступающий на стадии растворения сильвинитовых руд и осветления жидкой фазы. Однако при этом необходима корректировка управления расходом воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия, так как при охлаждении на ВКУ из этой жидкой фазы, нагретой за счет смешения ее с горячим осветленным раствором без подачи дополнительного количества воды, происходит кристаллизация хлористого натрия за счет испарения воды под вакуумом в процессе охлаждения, что приводит к увеличению содержания в целевом продукте NaCl, снижая его качество. Авторами установлена зависимость между расходом воды, которую необходимо подать для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - от перепада температур на входе в первом и в последнем корпусах ВКУ (t1, t2), расхода маточного раствора - , содержащего сгущенную твердую фазу обычно с Ж:Т=1,0-2,5, а также определен по фактическим данным для разных типов ВКУ усредненный эмпирический коэффициент φ, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора. Величина этого коэффициента зависит от температуры и состава жидких фаз, а также потерь тепла в окружающую среду. Однако для практики коэффициент φ можно считать постоянной величиной.

Ж:Т сгущенной суспензии может выходить за указанные пределы и зависеть от эффективности гидроклассификации мелкодисперсного хлористого калия в охлажденном после ВКУ маточном растворе.

Благодаря возврату сгущенной суспензии мелкодисперсного хлористого калия в первый корпус ВКУ объединенный раствор содержит зародыши кристаллизации, а нагрузка на корпусы ВКУ по твердой фазе становится оптимальной, что ведет к увеличению выхода целевых фракций кристаллизата, содержащих минимальное количество пылевых фракций KCl - не менее 100 микрон. Расход хлористого натрия CNaCl, т, который кристаллизуется при отсутствии подачи воды для предотвращения его кристаллизации при охлаждении маточного раствора GM, определяется зависимостью

,

где CNaCl - концентрация насыщения маточного раствора по NaCl, т/1000 т H2O, при насыщении раствора по хлористому калию определяется зависимостью:

,

где - содержание в маточном растворе хлористого магния, т/1000 т Н2О.

По предлагаемому способу при необходимости ввода в кристаллизат хлористого натрия, например, для понижения в нем содержания KCl расход воды уменьшают от вычисленного значения, при этом расход хлористого натрия в целевой продукт увеличится пропорционально его уменьшению от вычисленного значения расхода. Такая операция бывает полезной, если по контракту требуется отгружать продукт, например, с содержанием не менее 95% KCl, а по факту образуется продукт 95,5% или выше, а дополнительное содержание основного вещества в нем не оплачивается.

В таблице 1 приведены данные по дополнительному расходу воды, которую необходимо подать для корректировки ее расхода на ВКУ в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе для предотвращения кристаллизации NaCl.

Таблица 1
№ п.п Расход суспензии, т Ж:Т суспензии Расход маточного раствора, т Температура, °С Расход воды на корректировку, т
на выходе в ВКУ в последнем корпусе ВКУ
1 100 0,7 41,2 95 30 4,8
2 200 1,0 100,0 93 35 10,4
3 200 2,0 133,3 90 35 13,2
4 200 2,5 142,8 92 38 13,9
5 100 3,0 75,0 89 40 6,6

Из приведенных данных видно, что приведенное в предлагаемом изобретении техническое решение позволяет за счет корректировки регулирования расхода воды предотвратить кристаллизацию хлористого натрия на ВКУ в условиях возврата сгущенной суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе практически для любых режимов кристаллизации целевого продукта.

В таблице 2 приведены расходы хлористого натрия, который будет кристаллизоваться при отсутствии подачи воды для корректировки ее расхода для условий, приведенных в таблице 1.

№ п.п Расход маточного раствора, т Температура, °C Вычисленное значение CNaCl, т/1000 т H2O Расход воды на корректировку, т
на вход в ВКУ в последнем корпусе ВКУ
1 41,2 95 30 296,0 1,42
2 100,0 93 35 293,0 3,06
3 133,3 90 35 293,0 3,87
4 142,8 92 38 291,4 4,04
5 75,0 89 40 290,4 1,92

Вычисленное значение CNaCl определено в соответствии с прототипом для , равным 0. Из приведенных данных видно, что расход хлористого натрия, кристаллизующегося в условиях отсутствия корректировки расхода воды, является переменной величиной, зависящей от выбранных параметров, и автоматически их определяя и зная расход кристаллизата целевого продукта за счет управления расходом воды от вычисленного значения путем его снижения, можно регулировать содержание NaCl в хлористом калии, понижая его качество.

Таким образом решается задача предлагаемого изобретения корректировки управления процессом кристаллизации хлористого калия вводом дополнительного количества воды в условиях возврата на ВКУ суспензии мелкодисперсного хлористого калия в охлажденном маточном растворе.

Способ осуществляли следующим образом.

Горячий насыщенный раствор, поступающий со стадии растворения сильвинитовой руды и осветления жидкой фазы, направляли в запиточный стакан вакуум-кристаллизационной установки, замеряли температуру и расход раствора, массовую долю в нем калия, хлористого натрия, содержание MgCl2, расход раствора циклонной пыли и его состав с подачей полученных значений в систему управления основным расходом воды.

Дополнительно измеряли:

- расход охлажденного маточного раствора после выделения из него кристаллического хлористого калия в поступающий на кристаллизацию на ВКУ горячий раствор с помощью индукционного расходомера типа СОРА ХЕ, откалиброванного на т/ч с учетом содержания в нем твердой фазы;

- температуру раствора на входе в ВКУ, полученную после смешения всех фаз, а также температуру жидкой фазы на выходе из последнего корпуса ВКУ - с помощью термообразователя с унифицированным выходным сигналом, например ТСМУ-055. Сигналы с первичных преобразователей поступали на контроллер, где по полученным параметрам вычисляли концентрацию насыщения раствора по хлористому натрию и рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора путем корректировки общего расхода воды, подаваемой на ВКУ, в системе управления расходом воды.

При необходимости ввода в кристаллизат хлористого натрия расход воды уменьшали от вычисленного значения; при этом расход хлористого натрия увеличивался пропорционально его уменьшению от вычисленного значения расхода.

Параметры осуществления способа.

Пример 1

Показания приборов:

- расход маточного раствора, GM,
(расход суспензии 200 т с Ж:Т=1) 100 т
- температура раствора на входе в ВКУ, t1 93°С
- температура раствора в последнем корпусе ВКУ, t2 35°С

Рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - , т, по зависимости:

,

где φ - эмпирический коэффициент, определяющий количество воды, испаряемой при охлаждении маточного раствора, и составляющий 0,0018 т Н2О на 1°С из 1 т маточного раствора, 1/°С;

Вычисленные контроллером значения подали в систему управления расходом воды для корректировки общего его расхода. Увеличения содержания хлористого натрия в целевом продукте за счет подачи на ВКУ охлажденного маточного раствора не обнаружено.

Пример 2

Показания приборов:

- расход маточного раствора, GM,
(расход суспензии с Ж:Т=2-200 т) 133,3 т
- температура раствора на входе в ВКУ, t1 90°С
- температура раствора в последнем корпусе ВКУ, t2 35°С

Рассчитывали расход воды для предотвращения кристаллизации хлористого натрия при охлаждении маточного раствора - , т.

Рассчитывали концентрацию насыщения маточного раствора CNaCl, т/10000 т H2O по зависимости:

При этом содержания MgCl2 в растворе не обнаружено, т.е. .

Рассчитывали расход хлористого натрия GNaCl, т, который будет кристаллизоваться при отсутствии подачи воды с расходом :

Для понижения содержания хлористого калия в готовом продукте до требований контракта необходимо ввести в него 2 т хлористого натрия, следовательно, расход воды для корректировки состава

Вычисленные контроллером значения подали в систему управления расходом воды для корректировки общего его расхода. При этом содержание хлористого натрия в готовом продукте повысилось на 2 т, что при расходе целевого продукта 200 т/ч понизило содержание основного вещества в нем ~ на 1%.


СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ
Источник поступления информации: Роспатент

Showing 41-49 of 49 items.
17.02.2018
№218.016.2b8f

Способ крепления вставок из карбида вольфрама на подложке колонных центраторов

Изобретение относится к способам вставок из карбида твердого сплава-карбида вольфрама на подложке колонных центраторов. Технический результат - повышение ресурса колонных центраторов за счет повышения прочности и износостойкости карбидных вставок на изнашиваемых поверхностях колонных...
Тип: Изобретение
Номер охранного документа: 0002643397
Дата охранного документа: 01.02.2018
04.04.2018
№218.016.318b

Осциллятор для бурильной колонны

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, в частности к осцилляторам для бурильной колонны, предназначенным для создания гидромеханических импульсов, воздействующих на бурильную колонну. Осциллятор содержит героторный винтовой...
Тип: Изобретение
Номер охранного документа: 0002645198
Дата охранного документа: 16.02.2018
29.03.2019
№219.016.f38f

Способ получения сульфата калия и комплексного удобрения

Изобретение относится к технике производства минеральных удобрений и может быть использовано в технологии получения сульфата калия из хлорида калия и сульфата аммония в водной среде с переработкой избыточных растворов на комплексные удобрения. Способ включает взаимодействие растворов сульфата...
Тип: Изобретение
Номер охранного документа: 0002307791
Дата охранного документа: 10.10.2007
29.03.2019
№219.016.f508

Способ автоматического управления процессом растворения солей

Изобретение может быть использовано в производстве синтетического карналлита. Способ автоматического управления процессом растворения солей включает стабилизацию температуры растворения, стабилизацию концентрации полезного компонента в растворе изменением расхода сырья, определение полезного...
Тип: Изобретение
Номер охранного документа: 0002427416
Дата охранного документа: 27.08.2011
29.03.2019
№219.016.f59d

Способ получения карналлита

Изобретение относится к области химии и может быть использовано для получения карналлита, который является сырьем для магниевой промышленности. Горячие карналлитовые растворы подвергают очистке от механических примесей и кристаллизации карналлита при охлаждении растворов на установках...
Тип: Изобретение
Номер охранного документа: 0002458008
Дата охранного документа: 10.08.2012
29.03.2019
№219.016.f749

Способ получения хлорида калия

Изобретение относится к технике получения хлорида калия из сильвинитового сырья. Способ включает измельчение сильвинитового сырья в присутствии оборотного сильвинитового раствора и фракционное разделение гидроклассификацией. Далее пески гидроклассификации подвергают флотации. Слив, который...
Тип: Изобретение
Номер охранного документа: 0002448903
Дата охранного документа: 27.04.2012
29.03.2019
№219.016.f7e1

Способ извлечения хлорида калия

Изобретение относится к технике извлечения хлорида калия из калийсодержащего сырья с примесями хлорида натрия, нерастворимых и органических соединений. Способ включает термическую обработку калийсодержащего сырья при температуре 280-700°C и последующее растворение термически обработанного...
Тип: Изобретение
Номер охранного документа: 0002465204
Дата охранного документа: 27.10.2012
19.06.2019
№219.017.88fd

Способ переработки калийсодержащих руд

Изобретение относится к области химии и может быть использовано при получении хлористого калия из сильвинитовых калийных руд. Дробленую калийсодержащую руду выщелачивают раствором горячего ненасыщенного щелока, отделяют галитовые отходы от раствора насыщенного щелока фильтрацией. Раствор...
Тип: Изобретение
Номер охранного документа: 0002414423
Дата охранного документа: 20.03.2011
19.06.2019
№219.017.8905

Способ окрашивания хлористого калия

Изобретение может быть использовано для окрашивания галургического белого хлористого хлористого калия с получением продукта, имеющего окраску, характерную для флотационного хлористого калия. Способ окрашивания хлористого калия в красно-бурый цвет включает его обработку суспензией пигмента в...
Тип: Изобретение
Номер охранного документа: 0002414422
Дата охранного документа: 20.03.2011
Showing 71-80 of 86 items.
18.05.2019
№219.017.566f

Фрезерный инструмент для вырезки окна в обсадной колонне скважины

Изобретение относится к буровой технике, а именно к инструментам для вырезки окон в обсадных колоннах. Устройство содержит зарезной, проходной и калибрующий фрезеры-райберы с закрепленными в них режущими пластинами. Зарезной и проходной фрезеры-райберы выполнены в виде единого полого корпуса, а...
Тип: Изобретение
Номер охранного документа: 0002399747
Дата охранного документа: 20.09.2010
18.05.2019
№219.017.5748

Гидравлический забойный двигатель

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, а именно к нижним радиальным опорам скольжения шпиндельных секций, и может быть использовано в гидравлических героторных винтовых двигателях и турбобурах для бурения наклонных и горизонтальных...
Тип: Изобретение
Номер охранного документа: 0002357062
Дата охранного документа: 27.05.2009
18.05.2019
№219.017.5a35

Отклоняющее устройство для вырезки окна в обсадной колонне скважины

Изобретение относится к буровой технике, а именно к отклоняющим устройствам для вырезки окон в обсадных колоннах скважин. Содержит клин-отклонитель, в котором выполнена отклоняющая часть с наклонной поверхностью в виде желоба, и распорную часть, в которой выполнена направляющая в виде...
Тип: Изобретение
Номер охранного документа: 0002401930
Дата охранного документа: 20.10.2010
24.05.2019
№219.017.5e12

Гидравлический забойный двигатель

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважине. Обкладка из эластомера, закрепленная в трубчатом корпусе гидравлического забойного двигателя, выполнена с асимметричным расположением профиля ее поверхности с внутренними винтовыми зубьями,...
Тип: Изобретение
Номер охранного документа: 0002688824
Дата охранного документа: 22.05.2019
26.05.2019
№219.017.616c

Статор винтовой героторной гидромашины

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважине. Статор содержит трубчатый корпус с внутренней поверхностью, выполненной в форме геликоида с внутренними винтовыми зубьями, на каждом краю корпуса выполнена внутренняя резьба, а также содержит...
Тип: Изобретение
Номер охранного документа: 0002689014
Дата охранного документа: 23.05.2019
09.06.2019
№219.017.77bd

Героторный гидравлический двигатель

Изобретение относится к технике для бурения нефтяных и газовых скважин, а именно к героторным гидравлическим двигателям. Технический результат заключается в возможности подъема из скважины героторного гидравлического двигателя со шпинделем и долотом при разрушении резьбового соединения с...
Тип: Изобретение
Номер охранного документа: 0002292436
Дата охранного документа: 27.01.2007
09.06.2019
№219.017.7a67

Героторный гидравлический двигатель

Изобретение относится к устройствам приводов вращения, размещаемых в скважине, и может быть использовано в героторных винтовых гидравлических двигателях и турбобурах. Двигатель содержит трубчатый корпус, размещенный внутри него многозаходный винтовой героторный механизм, включающий статор с...
Тип: Изобретение
Номер охранного документа: 0002386003
Дата охранного документа: 10.04.2010
09.06.2019
№219.017.7ad1

Гидравлический забойный двигатель

Изобретение относится к гидравлическим приводам для вращательного бурения, размещаемым в скважинах, а именно - к ловильным устройствам для подъема оборвавшихся валов шпинделей с долотом, и может быть использовано в гидравлических героторных винтовых двигателях и турбобурах для бурения наклонных...
Тип: Изобретение
Номер охранного документа: 0002355860
Дата охранного документа: 20.05.2009
09.06.2019
№219.017.7f28

Карданный вал гидравлического забойного двигателя

Изобретение относится к устройствам приводов вращения, размещаемых внутри гидравлического забойного двигателя, в частности для соединения ротора винтового героторного двигателя или турбобура с валом шпинделя, снабженным долотом для бурения нефтяных и газовых скважин. Карданный вал содержит...
Тип: Изобретение
Номер охранного документа: 0002444600
Дата охранного документа: 10.03.2012
09.06.2019
№219.017.7f31

Регулятор угла перекоса винтового героторного двигателя

Изобретение относится к устройствам для бурения наклонно-направленных и горизонтальных нефтяных и газовых скважин, а именно - к регуляторам угла перекоса винтовых героторных гидравлических двигателей в компоновке низа бурильных колонн. Регулятор содержит полый кривой вал с наружными шлицами,...
Тип: Изобретение
Номер охранного документа: 0002444601
Дата охранного документа: 10.03.2012
+ добавить свой РИД