×
10.04.2013
216.012.34f0

Результат интеллектуальной деятельности: ЭЛЕКТРОШПИНДЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано, например, в шпиндельных узлах металлорежущих станков с высокой частотой вращения. Предлагаемый электрошпиндель содержит корпус, в полости которого размещен шихтованный сердечник статора, снабженный полузакрытыми пазами, в которых размещены катушки обмотки, причем в цилиндрической полости статора с возможностью вращения размещен ротор, подшипниковый узел которого выполнен с возможностью газодинамического поддержания, при этом электрошпиндель снабжен зажимом для фиксации рабочего инструмента. При этом согласно настоящему изобретению проводники обмотки каждого паза статора зафиксированы клином и контактирующей с ним шпоночной вставкой из изоляционного материала, поперечное сечение которой выполнено с возможностью фиксации спинки шпоночной вставки под клином паза, а сечение выступа соответствует сечению шлица паза, причем профиль поверхности выступа шпоночной вставки соответствует поверхности цилиндрической полости сердечника статора, поверхность спинки шпоночной вставки по всей ее длине снабжена продольным желобом, открытым во внутреннюю полость корпуса шпинделя, выполненную с возможностью подвода в нее воздуха, в полости корпуса электрошпинделя размещены цилиндрические втулки, диаметр полости которых равен диаметру цилиндрической полости сердечника статора, а между торцами сердечника статора и обращенными к ним торцами цилиндрических втулок размещены упорные кольца, полость которых превышает диаметр цилиндрической полости сердечника статора, снабженные буртиком, охватывающим часть внешней поверхности втулок, указанные упорные кольца выполнены из немагнитного материала и скреплены с сердечником статора, а цилиндрические втулки установлены с возможностью радиального смещения относительно продольной оси цилиндрической полости сердечника статора, для чего контакты втулок с корпусом, торцевым щитом и буртиками упорных колец снабжены уплотнительными кольцами, выполненными с возможностью упругого деформирования радиально и вдоль продольной оси сердечника статора, при этом ротор выполнен с внутренними полостями, для чего он содержит соосные полый вал и обечайку, жестко скрепленные друг с другом, по меньшей мере, тремя равноудаленными друг от друга перемычками, выполненными в виде пластин одинаковой толщины, ориентированными радиально к продольной оси ротора, торцы ротора жестко скреплены с торцевыми крышками, например, вакуумно-диффузионной сваркой, кроме того, одна из торцевых крышек ротора выполнена утолщенной и снабжена зажимом для фиксации рабочего инструмента. Технический результат, достигаемый при использовании настоящего изобретения, состоит в повышении ресурса электрошпинделей, в том числе работающих при повышенных и высоких частотах вращения, при одновременно обеспечении минимального прогиба ротора и улучшении охлаждения как ротора, так и обмотки статора электрошпинделя. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к электромашиностроению, и может быть использовано, например, в шпиндельных узлах металлорежущих станков с высокой частотой вращения.

Известен электрошпиндель шлифовального станка, содержащий приводной вал, смонтированный в корпусе на двух радиально-упорных подшипниках, образованных коническими поверхностями вала и охватывающими их коническими поверхностями втулок, которые разделены между собой газовым зазором, причем одна из втулок установлена в корпусе жестко, а вторая - с возможностью осевого перемещения посредством устройства перемещения, воздействующего на торцевую поверхность этой втулки, а также систему подачи смазки. Вторая втулка установлена в корпусе через регулировочное кольцо, а на конических поверхностях вала выполнены глухие продольные сегментные канавки переменной глубины, которые увеличиваются к торцам подшипников. Устройство смещения выполнено в виде группы пружин с различной жесткостью (патент RU 2224919, МПК 6 F16C 32/06, 2004).

Недостатком описанного устройства является отсутствие герметичности торцов регулировочного кольца, сопрягающихся с корпусом и подвижной втулкой. В процессе работы от температурных деформаций приводного вала начинает работать механизм смещения, компенсируя температурные деформации. Подвижная втулка под воздействием температурных деформаций приводного вала через несущий зазор смещается в осевом положении, поджимая пружины, сохраняя оптимальные несущие зазоры. Это смещение разгерметизирует торцы регулировочного кольца. В эти зазоры проникает пыль и в этих зазорах откладываются налеты растворов смазочно-охлаждающих жидкостей и абразива, сопровождающих процесс шлифования. Естественно, после загрязнения этих зазоров и исчезновения температурных деформаций подвижная втулка не займет исходное положение. Тем самым произойдет нежелательная коррекция регулировочного кольца с автоматическим влиянием на величину оптимального несущего зазора электрошпинделя. Надо отметить, что этот негативный процесс с длительностью работы устройства нарастает, что приводит к снижению ее работоспособности. При этом подшипники с газовой смазкой имеют ограничения по несущей способности.

Наиболее близким к данному изобретению устройством является электрошпиндель, содержащий корпус, в полости которого размещен шихтованный сердечник статора, снабженный полузакрытыми пазами, в которых размещены катушки обмотки, причем в цилиндрической полости статора с возможностью вращения размещен ротор, подшипниковый узел которого выполнен с возможностью газодинамического поддержания, при этом электрошпиндель снабжен зажимом для фиксации рабочего инструмента (см. патент РФ №2408802, МПК F16C 32/06, 2008).

Недостатком данного устройства является невозможность использования газового слоя в зазоре между статором и ротором для организации газового подшипника, что препятствует повышению его несущей способности и жесткости газового слоя подшипника, и, следовательно, невозможность его использования в мощных электрошпинделях.

Задачей, на решение которой направлено предлагаемое техническое решение, является повышение ресурса электрошпинделя за счет использования специально организованного газового подшипника, длительно обеспечивающего высокую надежность работы электрошпинделя, и уменьшения его массогабаритных показателей, а также расширение диапазона применения газовых подшипников на мощные электрошпиндели, имеющие значительные массы ротора.

Технический результат, который достигается при решении поставленной задачи, выражается в повышении ресурса электрошпинделей, в том числе работающих при повышенных и высоких частотах вращения. Одновременно обеспечивается минимальный прогиб ротора, охлаждение ротора и обмотки статора.

Поставленная задача решается тем, что электрошпиндель, содержащий корпус, в полости которого размещен шихтованный сердечник статора, снабженный полузакрытыми пазами, в которых размещены катушки обмотки, причем в цилиндрической полости статора с возможностью вращения размещен ротор, подшипниковый узел которого выполнен с возможностью газодинамического поддержания, при этом электрошпиндель снабжен зажимом для фиксации рабочего инструмента, отличается тем, что проводники обмотки каждого паза статора зафиксированы клином и контактирующей с ним шпоночной вставкой, поперечное сечение которой выполнено с возможностью фиксации спинки шпоночной вставки под клином паза, а сечение выступа соответствует сечению шлица паза, причем профиль поверхности выступа шпоночной вставки соответствует поверхности цилиндрической полости сердечника статора, кроме того, поверхность спинки шпоночной вставки по всей ее длине снабжена продольным желобом, открытым во внутреннюю полость корпуса шпинделя, выполненную с возможностью подвода в нее воздуха, кроме того, в полости корпуса электрошпинделя размещены цилиндрические втулки, диаметр полости которых равен диаметру цилиндрической полости сердечника статора, при этом между торцами сердечника статора и обращенными к ним торцами цилиндрических втулок размещены упорные кольца, полость которых превышает диаметр цилиндрической полости сердечника статора, снабженные буртиком, охватывающим часть внешней поверхности втулок, причем упорные кольца выполнены из немагнитного материала и скреплены с сердечником статора, кроме того, цилиндрические втулки установлены с возможностью радиального смещения относительно продольной оси цилиндрической полости сердечника статора, для чего контакты втулок с корпусом, торцевым щитом и буртиками упорных колец снабжены уплотнительными кольцами, выполненными с возможностью упругого деформирования радиально и вдоль продольной оси сердечника статора, кроме того, ротор выполнен с внутренними полостями, для чего он содержит соосные полый вал и обечайку, жестко скрепленные друг с другом, по меньшей мере, тремя равноудаленными друг от друга перемычками, выполненными в виде пластин одинаковой толщины, ориентированными радиально к продольной оси ротора, кроме того, торцы ротора жестко скреплены с торцевыми крышками, например, вакуумно-диффузионной сваркой, кроме того, одна из торцевых крышек ротора выполнена утолщенной и снабжена зажимом для фиксации рабочего инструмента. Кроме того, на сопряжениях с валом и обечайкой толщина перемычек плавно увеличивается к контактируемым с ними поверхностям. При этом ротор выполнен из материала с высокой магнитной проницаемостью.

Сопоставительный анализ совокупности существенных признаков предлагаемого технического решения и совокупности существенных признаков прототипа и аналогов свидетельствует о его соответствии критерию «новизна».

При этом существенные признаки отличительной части формулы изобретения решают следующие функциональные задачи.

Признаки «…проводники обмотки каждого паза статора зафиксированы клином и контактирующей с ним шпоночной вставкой…» обеспечивают удержание проводников обмотки каждого паза в его полости и возможность монтажа обмотки статора.

Признаки, указывающие, что поперечное сечение шпоночной вставки «выполнено с возможностью фиксации спинки шпоночной вставки под клином паза, а сечение выступа соответствует сечению шлица паза…» обеспечивают надежное удержание шпонки в пазу, исключающее возможность ее произвольного радиального смещения в направлении поверхности ротора.

Признак, указывающий, что «поверхность выступа шпоночной вставки соответствует поверхности цилиндрической полости сердечника статора», обеспечивает «цилиндричность» полости статора, в которой размещен ротор, и тем самым обеспечивает условия для использования газового слоя в зазоре между статором и ротором для организации газового подшипника.

Признаки, указывающие, что «поверхность спинки шпоночной вставки по всей ее длине снабжена продольным желобом, открытым во внутреннюю полость корпуса шпинделя, выполненную с возможностью подвода в нее воздуха», обеспечивают возможность охлаждения обмотки.

Признаки, указывающие, что «в полости корпуса шпинделя установлены цилиндрические втулки, внутренний диаметр полости которых равен диаметру цилиндрической полости сердечника статора», обеспечивают возможность использования поверхности внутренней полости цилиндрических втулок для увеличения площади опорной поверхности газового подшипника с целью увеличения его несущей способности.

Признаки, указывающие, что «между торцами сердечника статора и обращенными к ним торцами цилиндрических втулок размещены упорные кольца, полость которых превышает диаметр цилиндрической полости сердечника статора», обеспечивают «формирование» кольцевой канавки, для сбора воздуха из рабочего зазора подшипника.

Признаки, указывающие, что упорные кольца снабжены «буртиком, охватывающим часть внешней поверхности втулки, причем упорные кольца выполнены из немагнитного материала и скреплены с сердечником статора», обеспечивают возможность надежного продольного и радиального «подрессоривания» концов цилиндрических втулок при использовании упругих уплотнительных колец для обеспечении герметичности этого стыка, при этом исключается разрушение уплотнительных колец.

Признаки, указывающие, что «цилиндрические втулки установлены с возможностью радиального смещения относительно продольной оси цилиндрической полости сердечника статора, для чего контакты втулок с корпусом, торцевым щитом и буртиками упорных колец снабжены уплотнительными кольцами, выполненными с возможностью упругого деформирования радиально и вдоль продольной оси сердечника статора», обеспечивают повышение устойчивости ротора за счет демпфирования резиновыми уплотнительными кольцами.

Признаки, указывающие, что «ротор выполнен с внутренними полостями, для чего он содержит соосные полый вал и обечайку, жестко скрепленные друг с другом, по меньшей мере, тремя равноудаленными друг от друга перемычками, выполненными в виде пластин одинаковой толщины, ориентированными радиально к продольной оси ротора», способствуют уменьшению массы и массовых моментов инерции ротора и тем самым расширяют диапазон устойчивости ротора в форме «полускоростного вихря» и повышают запас статической несущей способности газодинамического подшипника при незначительном снижении прочности ротора по сравнению со сплошным цельнокованым, кроме того, такая конструкция препятствует значительной деформации ротора в радиальном направлении от центробежных сил, тем самым предотвращая заклинивание газового подшипника.

Признаки, указывающие, что «торцы ротора жестко скреплены с торцевыми крышками, например, вакуумно-диффузионной сваркой», обеспечивают повышение прочности конструкции ротора.

Признаки, указывающие, что «одна из торцевых крышек ротора выполнена утолщенной и снабжена зажимом для фиксации рабочего инструмента», обеспечивают возможность выполнения заявленным устройством функций шпинделя.

Признаки второго пункта формулы изобретения способствуют повышению прочности ротора.

Признаки третьего пункта формулы изобретения обеспечивают эффективное вращение ротора.

На фиг.1 показан продольный разрез электрошпинделя, на фиг.2 - поперечный разрез.

На чертежах показаны корпус 1, сердечник статора 2, пазы 3, обмотки 4, клинья 5, шпоночные вставки 6, выступ 7, желоб 8, цилиндрические втулки 9, 10, упорные кольца 11, 12, буртики 13, торцевой щит 14, уплотнительные кольца 15, 16, 17, 18, вал 19, обечайка 20, перемычки 21, торцевые крышки 22, 23, зажим 24, зазор 25, лепестковые газодинамические подшипники (ЛТП) 26, 27, упорный диск 28, вентилятор 29, фильтр 30, отверстия 31, полость 32, нажимные листы 33, 34, бурт 35 корпуса 1, разрезное кольцо 36.

Электрошпиндель содержит герметичный корпус 1, в полости которого размещен сердечник статора 2 из электротехнической стали (см. фиг.1, фиг.2). По внешнему диаметру статора 2 опирается на корпус шпинделя 1, а по внутреннему диаметру имеет антифрикционное покрытие зубцов, например, антифрикционным материалом ВАП-3. Сердечник статора 2 снабжен полузакрытыми пазами 3, в которых размещены катушки обмотки 4.

Проводники обмотки 4 каждого паза 3 статора 2 зафиксированы пазовым клином 5 и контактирующей с ним шпоночной вставкой 6, поперечное сечение которой выполнено с возможностью фиксации спинки шпоночной вставки 6 в продольной полости паза 3, а сечение выступа 7 соответствует сечению шлица паза 3, причем поверхность выступа шпоночной вставки 6 соответствует поверхности цилиндрической полости сердечника статора 2. Поверхность спинки шпоночной вставки 6 по всей ее длине снабжена продольным желобом 8, открытым во внутреннюю полость корпуса 1 электрошпинделя, выполненную с возможностью подвода в нее воздуха. В полости корпуса 1 электрошпинделя установлены цилиндрические втулки 9,10, внутренний диаметр полости которых равен диаметру цилиндрической полости сердечника статора 2. Между торцами сердечника статора 2 и обращенными к ним торцами цилиндрических втулок 9, 10 размещены упорные кольца 11, 12, полость которых превышает диаметр цилиндрической полости сердечника статора 2, снабженные буртиками 13, охватывающими часть внешней поверхности втулок 9, 10, причем упорные кольца 11 и 12 выполнены из немагнитного материала и скреплены с сердечником статора 2. Кроме того, цилиндрические втулки 9 и 10 установлены с возможностью радиального смещения относительно продольной оси цилиндрической полости сердечника статора 2, для чего контакты втулок 9 и 10 с корпусом 1, торцевым щитом 14 и буртиками 13 упорных колец 11, 12 снабжены уплотнительными кольцами 15, 16, 17, 18, выполненными с возможностью упругого деформирования радиально и вдоль продольной оси сердечника статора 2. В цилиндрической полости статора 2 с возможностью вращения размещен ротор, подшипниковый узел которого выполнен с возможностью газодинамического поддержания. Ротор выполнен с внутренними полостями, для чего он содержит соосные вал 19 и обечайку 20, жестко скрепленные друг с другом, по меньшей мере, тремя равноудаленными друг от друга перемычками 21, выполненными в виде пластин одинаковой толщины, ориентированными радиально к продольной оси ротора. Торцы ротора жестко скреплены с торцевыми крышками 22, 23, например, вакуумно-диффузионной сваркой, кроме того, одна из торцевых крышек 22 ротора выполнена утолщенной и снабжена зажимом 24 для фиксации рабочего инструмента, например цанговым.

Кроме того, на сопряжениях с полым валом 19 и обечайкой 20 толщина перемычек 21 плавно увеличивается к контактируемым с ними поверхностям. При этом ротор выполнен из материала с высокой магнитной проницаемостью, например из сплава 48КНФ.

Между наружной цилиндрической поверхностью обечайки 20 и внутренней поверхностью зубцов статора 2, шпоночными вставками 6, цилиндрическими втулками 9, 10 имеется небольшой зазор 25. Газовый подшипник составляют поверхности зубцов сердечника статора 2 и шпоночных вставок 6, обращенные к ротору, внутренняя поверхность которых соответствует кривизне поверхности цилиндра, цилиндрические втулки 9, 10, наружная цилиндрическая поверхность обечайки 20 и зазор 25 между ними.

Осевой подшипниковый узел шпинделя составляют: осевые лепестковые газодинамические подшипники (ЛГП) 26, 27, упорный диск 28. На упорном диске 28 изготовлены лопатки вентилятора 29. При вращении ротора лопатки вентилятора 29 создают разрежение, воздух через фильтр 30, отверстия 31 в корпусе 1 электрошпинделя проходит по продольным желобам 8 и выходит наружу. Для охлаждения корпуса электрошпинделя предусмотрена полость 32 охлаждения деионизированной водой.

Статор собирается в следующем порядке. Из штампованных листов электротехнической стали собирают пакет сердечника статора 2 и устанавливают нажимные листы 33, 34 по торцам и скрепляют их сваркой по канавкам на наружной цилиндрической поверхности сердечника статора 2. Далее в пазы 3 пакета сердечника статора 2 устанавливают пазовую изоляцию, укладывают обмотку 4 статора 2 и заклинивают ее пазовыми клиньями 5. Обмотку 4 статора 2 подвергают пропитке и сушке. Внутрь пазов 3 статора 2 под клинья 5 плотно устанавливают на клей шпоночные вставки 6. Затем шлифуют внутреннюю цилиндрическую поверхность сердечника статора 2 и шпоночных вставок 6. Далее внутреннюю цилиндрическую поверхность зубцов статора 2 и цилиндрических втулок 9, 10, шпоночных вставок 6 покрывают антифрикционным материалом, например ВАП-3. К торцам сердечника статора приклеивают упорные кольца 11 и 12, выполненные из изоляционного немагнитного материала, например стеклотекстолита, концентрично к внутренней цилиндрической поверхности статора 2. Под упорное кольцо 11 вплотную к нему вставляют цилиндрическую втулку 9 с надетыми на нее уплотнительными резиновыми кольцами 15, 16. Собранный пакет вставляют в корпус 1 электрошпинделя до упора в бурт 35 корпуса 1 электрошпинделя. Полученный комплект фиксируют в корпусе 1 электрошпинделя с помощью разрезного кольца 36. На втулку 10 надевают уплотнительные резиновые кольца 17, 18 и прижимают ее к упорному кольцу 12. Устанавливают торцевой щит 14.

Короткозамкнутый ферромагнитный ротор асинхронного двигателя изготавливают в следующем порядке. Цилиндрическую заготовку ротора подвергают механической обработке, в процессе которой в цилиндре сверлят центральное отверстие, а также равномерно расположенные отверстия вокруг центрального. Далее эти отверстия фрезеруют с целью получения пазов 3 грушевидной формы. Наконец, к полученной заготовке с торцов приваривают крышку 22, снабженную цанговым зажимом 24, и крышку 23. Наружную поверхность ротора шлифуют для получения необходимой геометрии и шероховатости поверхности.

Работает электрошпиндель следующим образом. При подаче напряжения на обмотку статора 2 ротор начинает вращаться. Воздух, поступающий в зазор 25 с торцев подшипника, создает подъемную силу за счет вращения ротора и разности зазоров в верхней и нижней частях подшипника, обеспечивающую поддержание ротора в подвешенном положении относительно статора 2. Воздух через фильтр 30 за счет разрежения, создаваемого лопатками вентилятора 29, поступает в корпус 1 электрошпинделя через отверстия 31, проходит в зоне лобовой части обмотки статора 2, а также в желобах 8 под пазовыми клиньями 5 сердечника статора 2 и выходит наружу. Охлаждающий воздух отнимает тепло от сердечника статора 2 и обмотки 4, обеспечивая на допустимом уровне нагрев обмотки 4 и сердечника статора 2 и короткозамкнутого ферромагнитного ротора и тем самым обеспечивая постоянный зазор газового подшипника при эксплуатации. Работа асинхронного двигателя не отличается от работы аналогичных устройств.


ЭЛЕКТРОШПИНДЕЛЬ
ЭЛЕКТРОШПИНДЕЛЬ
Источник поступления информации: Роспатент

Showing 261-270 of 282 items.
17.02.2018
№218.016.2d69

Тепловая система газоохлаждаемого реактора атомной энергетической установки

Изобретение относится к области энергетики и, в частности, к атомным энергетическим установкам, работающим по комбинированному циклу. Тепловая система включает газотурбинный и паротурбинный циклы утилизации тепла, при использовании гелия в качестве рабочего тела газотурбинного цикла и пара в...
Тип: Изобретение
Номер охранного документа: 0002643510
Дата охранного документа: 02.02.2018
20.02.2019
№219.016.c293

Распыливающий узел ротационной горелки для жидкого топлива

Изобретение относится к области теплоэнергетики, а именно к ротационным горелкам, предназначенным для подачи любых видов жидкого топлива и воздуха в топки котлов, и может быть использовано в различных отраслях промышленности, где используются топливосжигающие устройства. Распыливающий узел...
Тип: Изобретение
Номер охранного документа: 0002450208
Дата охранного документа: 10.05.2012
20.02.2019
№219.016.c3a6

Ротационная горелка для жидкого топлива

Изобретение относится к области теплоэнергетики, а именно к ротационным горелкам, предназначенным для подачи жидкого (предпочтительно тяжелого) топлива, отработанного масла и воздуха в топки котлов малой мощности (до 1 МВт), и может быть использовано в различных отраслях, где используются...
Тип: Изобретение
Номер охранного документа: 0002448301
Дата охранного документа: 20.04.2012
20.02.2019
№219.016.c3ce

Ротационная горелка для жидкого топлива

Изобретение относится к области теплоэнергетики и предназначено для подачи жидкого (предпочтительно тяжелого) топлива, отработанного масла и воздуха в топки котлов и может быть использовано в различных отраслях, где используются топливосжигающие устройства. Горелка содержит корпус, в полости...
Тип: Изобретение
Номер охранного документа: 0002447360
Дата охранного документа: 10.04.2012
23.02.2019
№219.016.c69f

Иммуностимулирующий комплекс, способ его получения и применение

Группа изобретений относится к биотехнологии, иммунологии, медицине и ветеринарии, касается способа получения однородного иммуностимулирующего комплекса (ТИ-комплекса), являющегося носителем для белковых антигенов, состоящего из смеси тритерпенового гликозида кукумариозида А-2 (КД), холестерина...
Тип: Изобретение
Номер охранного документа: 0002446822
Дата охранного документа: 10.04.2012
01.03.2019
№219.016.cec9

Архитектурно-строительная система из объемных модулей для возведения зданий

Изобретение относится к области строительства, в частности к архитектурно-строительной системе из объемных модулей для возведения зданий. Технический результат заключается в обеспечении простоты использования, широком спектре применения и высокой мобильности. Система включает объемные модули,...
Тип: Изобретение
Номер охранного документа: 0002456418
Дата охранного документа: 20.07.2012
01.03.2019
№219.016.d08b

Архитектурно-строительная система из объемных модулей для возведения зданий

Изобретение относится к области строительства, в частности к архитектурно-строительной системе из объемных модулей для возведения зданий. Технический результат заключается в обеспечении простоты использования, широком спектре применения и высокой мобильности. Система включает объемные модули,...
Тип: Изобретение
Номер охранного документа: 0002462567
Дата охранного документа: 27.09.2012
01.03.2019
№219.016.d08c

Архитектурно-строительная система из объемных модулей для возведения зданий

Изобретение относится к области строительства, в частности к архитектурно-строительной системе из объемных модулей для возведения зданий. Технический результат заключается в обеспечении простоты использования, широком спектре применения и высокой мобильности. Система включает объемные модули,...
Тип: Изобретение
Номер охранного документа: 0002462569
Дата охранного документа: 27.09.2012
15.03.2019
№219.016.e0e6

Способ идентификации материалов путем многократного радиографического облучения

Использование: для идентификации материалов путем многоэнергетической радиографии. Сущность заключается в том, что производят радиографическое просвечивание исследуемого объекта под различными углами, определяют коэффициенты ослабления для материалов, входящих в состав объекта, при этом...
Тип: Изобретение
Номер охранного документа: 0002426102
Дата охранного документа: 10.08.2011
04.04.2019
№219.016.fcfb

Способ регуляции иммуногенности антигена

Способ регуляции иммуногенности антигена предусматривает инкорпорирование антигена в структуру иммуностимулирующего комплекса (ТИ-комплекса) - носителя антигена. В качестве белкового антигена используют порин из Yersinia pseudotuberculosis, а его носителем является иммуностимулирующий комплекс...
Тип: Изобретение
Номер охранного документа: 0002440141
Дата охранного документа: 20.01.2012
Showing 261-270 of 280 items.
25.08.2017
№217.015.a14c

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия,...
Тип: Изобретение
Номер охранного документа: 0002606372
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a643

Устройство для формирования пространственного спирального поля

Изобретение относится к области антенной техники и может быть использовано в качестве источника излучения. Устройство для формирования пространственного спирального поля включает излучатель поля и выполненную с возможностью вращения относительно оси распространения фронта спиральной волны...
Тип: Изобретение
Номер охранного документа: 0002608059
Дата охранного документа: 12.01.2017
25.08.2017
№217.015.a65c

Самонастраивающийся электропривод манипулятора

Изобретение относится к робототехнике и может быть использовано для создания систем управления приводами манипуляторов. Технический результат заключается в формировании дополнительного сигнала управления, подаваемого на вход электропривода, который обеспечивает получение моментного воздействия,...
Тип: Изобретение
Номер охранного документа: 0002608005
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a669

Способ получения экстракта, обладающего антиоксидантной активностью, из растений рода амарант

Изобретение относится к фармацевтической промышленности и касается способа получения экстракта, обладающего антиоксидантной активностью, из растений рода Амарант. Способ включает настаивание измельченного растительного сырья с экстрагентом, при этом в качестве растительного сырья используют...
Тип: Изобретение
Номер охранного документа: 0002608131
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.a76f

Устройство для формирования пространственного спирального поля

Изобретение относится к области антенной техники и может быть использовано в качестве источника излучения. Устройство для формирования пространственного спирального поля включает антенну, имеющую форму тарелки, на поверхности которой выполнен радиальный разрез от центральной части до кромки...
Тип: Изобретение
Номер охранного документа: 0002608016
Дата охранного документа: 11.01.2017
25.08.2017
№217.015.a8a2

Средство для антимикробной обработки готовой мясной продукции

Изобретение относится к пищевой промышленности, а именно к обработке готовой мясной продукции: сосисок, колбас, мясной деликатесной продукции. Средство для антимикробной обработки готовой мясной продукции содержит, мас. %: лактат натрия в виде 60% сиропа - 2,7-3,2; сорбат калия - 2,8-3,1;...
Тип: Изобретение
Номер охранного документа: 0002611169
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a904

Средство для антимикробной защиты готовой мясной продукции при хранении

Изобретение относится к пищевой промышлености, а именно к составам для обработки поверхности готовой мясной продукции, такой как сосиски, колбасы, мясные деликатесы. Средство представляет собой водный раствор, содержащий, мас.%: сорбат калия 4,5-5,0; лактат натрия 4,5-5,0; оксид кальция...
Тип: Изобретение
Номер охранного документа: 0002611171
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a928

Соосные судовые гребные винты противоположного вращения

Изобретение относится к области судостроения, а именно к соосным судовым гребным винтам противоположного вращения для судов. Соосные судовые гребные винты противоположного вращения, один из которых жестко насажен на гребной вал, снабжен реверсивной передачей, которая встроена в ступицы винтов,...
Тип: Изобретение
Номер охранного документа: 0002611468
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa1c

Роторный диспергатор

Изобретение относится к устройствам для измельчения твердой компоненты пульп и может быть использовано для переработки золошлаковых материалов в процессе их утилизации. Роторный диспергатор содержит корпус с крышкой, входной и выходной патрубки, вертикальный вал, ротор снабжен рабочими...
Тип: Изобретение
Номер охранного документа: 0002611523
Дата охранного документа: 27.02.2017
25.08.2017
№217.015.ab84

Арматура композитная

Изобретение относится к строительству, а именно к неметаллической композитной арматуре, которая применяется для армирования термоизоляционных стеновых конструкций, монолитных бетонных и сборных конструкций, для использования в конструктивных элементах зданий в виде отдельных стержней, для...
Тип: Изобретение
Номер охранного документа: 0002612284
Дата охранного документа: 06.03.2017
+ добавить свой РИД