×
10.04.2013
216.012.338a

Результат интеллектуальной деятельности: СПОСОБ ЭЛЕКТРОЛИЗНОГО БОРИРОВАНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ В РАСПЛАВЕ, СОДЕРЖАЩЕМ ОКСИД БОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включает реверсирование постоянного тока. При этом перед борированием проводят очистной электролиз при напряжении, меньшем, чем напряжение разложения расплава. Борирование ведут в расплаве, содержащем 3 мас.% оксида бора, хлорид кальция - остальное, в режиме реверсирования тока с длительностью катодного импульса τ=1,5-1,7 с, анодного τ=0,3-0,4 с при одинаковой плотности тока 0,03-0,04 А/см в обоих импульсах. Технический результат заключается в предотвращении образования на катоде пассивирующего осадка. 1 табл., 3 ил., 1 пр.
Основные результаты: Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включающий реверсирование постоянного тока, отличающийся тем, что перед борированием проводят очистной электролиз при напряжении, меньшем чем напряжение разложения расплава, борирование ведут в расплаве, содержащем 3 мас.% оксида бора, хлорид кальция - остальное, процесс ведут в режиме реверсирования тока с длительностью катодного импульса τ=1,5-1,7 с, анодного τ=0,3-0,4 с при одинаковой плотности тока 0,03-0,04 А/см в обоих импульсах.

Изобретение относится к области химико-термической обработки металлов и сплавов, в частности к диффузионному борированию стальных изделий в солевом расплаве. Может быть использовано для интенсификации борирования при поверхностном упрочнении деталей машин и инструментов в машиностроительной, металлургической, химической и других отраслях промышленности.

Для этих целей известен способ электролизного борирования стали в расплаве тетрабората натрия (буры) с использованием реверсированного тока (SU №491731, опубл. 1975 г. Б. №42) [1]. Для уменьшения хрупкости борированного слоя начальную стадию процесса перед реверсированием ведут при наложении постоянного тока плотностью 0,1-0,2 А/см2 в течение 5-10 минут. В частном случае обработку ведут с длительностью катодного и анодного полупериодов соответственно 0,8-1,4 и 0,4-0,5 с при плотности тока в этих полупериодах соответственно 0,2-0,4 А/см2 и 0,20-0,25 А/см2.

Установлено, что наибольший эффект интенсификации борирования стали в расплаве буры наступает при следующих параметрах импульсов: анодного τа=0,4 с; катодных τк=0,8 с; 1,4 с; 1,8 с, при плотности тока в катодном импульсе iк=0,2-0,4 А/см2, в анодном iа≤0,2 А/см2. Оптимальный период реверсирования составляет 1,2÷2 с, общая длительность электролиза - 2 часа (Афанасьев А.А., Сапронов Д.Р., Трутнева Л.П. Интенсификация электролизного борирования сталей реверсированным током. - Тезисы докладов IV Кольского семинара по электрохимии редких и цветных металлов, 1983 г.) [2]. Результатом интенсификации является повышение скорости роста боридного диффузионного слоя на 30-40%.

Известен также способ циклического электролизного борирования углеродистых сталей в расплаве буры (SU 768854, опубл. 1980 г.) [3]. Суть этого способа заключается в прерывании тока электролиза с последующей паузой, при этом длительность токового импульса вдвое больше длительности паузы, например: ток 40-60 мин, затем пауза 20-30 мин. Катодная плотность тока поддерживается постоянной на уровне 0,2 А/см2. Температура процесса не выше 920°С, т.к. при более высоких температурах происходит рост зерен стали и ухудшение механических свойств детали в целом. В результате такого способа интенсификации скорость роста боридного слоя увеличивается на 10-15%. Но боридный слой менее хрупкий, т.к. он состоит из низшего борида Fe2B. Интенсификация процесса борирования объясняется тем, что во время паузы пассивирующий осадок разрыхляется, улучшая доступ ионов бора к поверхности стали с последующим разрядом до состояния адсорбированных атомов, способных к диффузии в приповерхностный слой стали с образованием диффузионного слоя.

Исходя из современных представлений электрохимии оксидных расплавов, в основе процесса борирования лежит реакция разряда ионов В3+ из комплексов [B4O7]2- на поверхности железного (стального) катода:

Из реакции (1) видно, что образование тугоплавкого метабората натрия <Na2B2O4> происходит одновременно с образованием атомов бора, диффундирующих в железо. Скорости диффузии бора в железо соответствует определенная предельная катодная плотность тока порядка 0,03-0,05 А/см2: если она превышена, то избыточные атомы бора образуют кристаллы, которые вместе с метаборатом формируют на поверхности катода и вблизи нее пассивирующий осадок, который растет в толщину и постепенно снижает величину тока электролиза до неприемлемо низких величин, фактически прекращая процесс борирования.

Использование в известных способах тетраборатного (Na2B4O7) расплава следует признать неудачным из-за его высокой вязкости (260 МПа·с) и низкой электропроводности (40 Ом·м-1) при 900°С. Эти фундаментальные недостатки известного расплава в совокупности с высокой катодной плотностью тока электролиза являются причиной накопления на поверхности борируемой детали пассивирующего осадка, состоящего на 75 об.% из твердого тугоплавкого (tплав. 968°С) метабората натрия (Na2B2O4) и на 25% из кристаллов элементарного бора (tплав. 2075°С). Этот осадок экранирует поверхность детали от расплавленного электролита, замедляя процесс борирования.

Задача настоящего изобретения заключается в устранении причин, мешающих интенсификации процесса электролизного борирования.

Для этого предложен способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, в котором перед борированием проводят очистной электролиз при напряжении, меньшем, чем напряжение разложения расплава, борирование ведут в расплаве, содержащем 3 мас.% оксида бора, хлорид кальция - остальное, процесс ведут в режиме реверсирования тока с длительностью катодного импульса τk=1,5-1,7 с, анодного τа=0,3-0,4 с при одинаковой плотности тока 0,03-0,04 А/см2 в обоих импульсах.

В заявленном способе используется известный из RU №2215060, опубл. 2003 г. [4] солевой расплав, состоящий из 95-99 мас.% галогенида щелочноземельного металла и 1-5 мас.% оксида бора. Как следует из описания [4], известным является использование состава в циклическом электролизе. Сущность заявленного способа заключается в сочетании известного расплава с реверсированием постоянного тока при новых режимах электролиза. Вязкость расплава хлорида кальция при 900°С в 100 раз меньше, чем у буры, а электропроводность больше в 1,27 раз. При этом в ходе исследований было выявлено, что пассивирующий осадок, состоящий из метабората кальция и кристаллического бора, появляется на катоде только тогда, когда расплав хлорида кальция содержит оксид СаО. Этот оксид появляется в расплаве в результате неполной его очистки от остаточной влаги при плавлении этой весьма гигроскопичной соли. Оксид кальция в солевом расплаве диссоциирует на ионы, поэтому при загрузке в расплав борсодержащей добавки - оксида бора (B2O3) он растворяется в расплаве с образованием тетраборатных анионов по реакции:

Далее, при разряде иона В4О72- на катоде по реакции:

появляется пассивирующий осадок из практически нерастворимого в CaCl2 метабората кальция. Ионы О2- из реакции (3) мигрируют к графитовому аноду и разряжаются на нем с образованием СО, который кислородом воздуха окисляется до CO2. Для устранения причины появления солевой части пассивирующего осадка <CaB2O4> предложен очистной электролиз малой силой тока при напряжении, меньшем, чем напряжение разложения расплава, преследующий тщательную очистку расплава CaCl2 от оксида СаО.

Причиной появления и накопления второго компонента пассивирующего осадка - кристаллического бора, неспособного к контактной диффузии в железо (сталь), т.е. балластного, бессмысленно теряемого бора, является завышенная плотность тока на катоде, когда выделившийся бор образует кристаллы, включаемые в пассивирующий осадок.

Экспериментально установлено, что для предотвращения этого явления катодная плотность тока (ik) должна составлять 0,035-0,04 А/см2, что в 3-5 раз меньше, чем в известных способах 1-3, а режим реверсирования тока следующий: длительность катодного импульса τk=1,5-1,7 с, анодного τа=0,3-0,4 с при одинаковой плотности тока 0,03-0,04 А/см2 в обоих импульсах. Наибольший эффект интенсификации наблюдается при ik=0,04 А/см2, τk=1,5 с и τа=0,4 с. Кратковременный анодный импульс необходим для устранения образуемой на поверхности борируемой детали оксидной пленки, экранирующую часть поверхности катода и физически мешающей электроосаждению бора. При этом концентрация оксида бора в расплаве, составляющая 3 мас.% в сочетании с заявленным режимом реверсирования тока обеспечивает достаточную скорость диффузионного борирования с получением плотных и равномерных боридных покрытий нужного фазового состава. Концентрация оксида бора менее 3 мас.% недостаточна для минимальной скорости процесса борирования, а повышение концентрация оксида бора более 3% не оказывает влияния на скорость процесса.

Технический результат заявляемого способа электролизного борирования заключается в предотвращении образования на катоде пассивирующего осадка.

Пример.

Заявленное изобретение иллюстрируется следующей таблицей и рисунками. В таблице представлены величины толщины диффузионных боридных слоев на сталях и фазовый состав покрытия при электролизе с реверсированием тока в расплаве, а также данные о параметрах процесса. При этом шлифы Ст.20 с боридными слоями изображены на фотографиях - фиг.1, 2, 3.

Электролизное борирование с реверсированием тока проводили в специально созданной установке, состоящей из лабораторной соляной ванны с корундовым тиглем, программатора ПР-8 и выпрямителя тока на 10 А. Процесс вели при температурах от 850 до 950°С, близких к температурам закалки конструкционных и инструментальных сталей, которые выбираются из условий совмещения процесса борирования с разогревом стальных деталей под закалку после борирования.

В корундовом тигле при температуре 900°С наплавлено 800 г расплава, содержащего 3 мас.% оксида бора и хлорид кальция - остальное. После расплавления солей в расплав были опущены графитовый анод и железный катод и проводился очистной электролиз при напряжении 1 В в течение 2 часов, после чего железный катод удаляли из очищенного расплава и на специальной подвеске погружали в него стальные образцы, изготовленные из Армко-железа, Ст.20, Ст.50, У8. Электролизное борирование с реверсированием тока в расплаве 3% мас. B2O3+CaCl2 - остальное, вели при температуре 850-950°С, iк=0,04 А/см2, τ=1,5 с и ia=0,04 А/см2, τ=0,4 с. Количество реверсов составляло 3263, общее время нахождения образцов в расплаве составило 2 часа. Данные о характеристиках процесса и полученных боридных покрытиях приведены в таблице и на фотографиях шлифов (фиг.1, 2 и 3) на примере Ст.20 с боридным покрытием, характерным для всех указанных в таблице сталей.

В соответствии с данными таблицы, толщина боридных покрытий, полученных при температуре 850-950°С, за 2 ч при электролизном борировании с реверсированием тока в расплаве CaCl2+3 мас.% B2O3 на 30% больше толщины покрытий, получаемых циклическим способом за 3 ч в расплаве CaCl2+5% B2O3 при одной и той же температуре. Причем покрытия, получаемые заявленным способом, представляют собой равномерные, плотные, двухфазные покрытия, соотношение фаз FeB и Fe2B в которых составляет примерно 1:1. После борирования в указанных условиях детали легко отмываются в холодной воде, при этом в промывочной воде нет взвеси черного порошка бора.

Во всех приведенных примерах B2O3 после первоначальной загрузки в расплав больше не добавлялся, что свидетельствует в пользу снижения расхода бора. Таким образом, заявленным способом интенсификация процесса борирования металлов в расплаве хлорида кальция примерно на 30% больше, чем в известных способах.

Кроме того, используемый в заявленном способе хлоридный в основе электролит в 4,5 раза дешевле электролита из расплавленной буры, т.к. цена гранулированного хлорида кальция составляет 17,6 руб./кг, а цена плавленой буры - 80 руб./кг (в ценах 2011 г.). При этом для электролиза указанного расплава могут использоваться серийно выпускаемые в России электродные соляные ванны для безокислительного нагрева стали под закалку. Использование электродных соляных ванн имеет преимущество перед нестандартными электролизерами сложной конструкции, применяемыми для электролизного борирования сталей в буре, как например, установка по SU 815077, опубл. 1981 г. Соответственно, налицо экономия дорогостоящих материалов и затрат на изготовление электролизера. Наконец, хлорид кальция безвреден для человеческого организма, а регенерация этой соли вкупе с системой улавливания ее паров и полным отсутствием вредных выбросов в окружающую среду обеспечивает экологичность нового процесса борирования. По оценке авторов, снижение общих затрат на единицу конечной продукции по отношению к способам борирования в расплаве буры составляет 10-15 раз.

Таблица
Сталь Борирование 850°С, 2 ч Борирование 900°С, 2 ч Борирование 950°С, 2 ч
Рис. № Толщина боридного слоя, мкм Фазы FeB/Fe2B, мкм Рис № Толщина боридного слоя, мкм Фазы FeB/Fe2B, мкм Рис № Толщи на боридного слоя, мкм Фазы FeB/Fe2B, мкм
Армко-железо 86 38/48 135 53/82 168 58/110
Ст.20 1 81 43/38 2 120 62/58 3 144 48/96
Ст.50 72 34/38 120 55/65 120 48/72
У8 67 24/43 115 62/25

Способ электролизного борирования стальных изделий в расплаве, содержащем оксид бора, включающий реверсирование постоянного тока, отличающийся тем, что перед борированием проводят очистной электролиз при напряжении, меньшем чем напряжение разложения расплава, борирование ведут в расплаве, содержащем 3 мас.% оксида бора, хлорид кальция - остальное, процесс ведут в режиме реверсирования тока с длительностью катодного импульса τ=1,5-1,7 с, анодного τ=0,3-0,4 с при одинаковой плотности тока 0,03-0,04 А/см в обоих импульсах.
СПОСОБ ЭЛЕКТРОЛИЗНОГО БОРИРОВАНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ В РАСПЛАВЕ, СОДЕРЖАЩЕМ ОКСИД БОРА
СПОСОБ ЭЛЕКТРОЛИЗНОГО БОРИРОВАНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ В РАСПЛАВЕ, СОДЕРЖАЩЕМ ОКСИД БОРА
СПОСОБ ЭЛЕКТРОЛИЗНОГО БОРИРОВАНИЯ СТАЛЬНЫХ ИЗДЕЛИЙ В РАСПЛАВЕ, СОДЕРЖАЩЕМ ОКСИД БОРА
Источник поступления информации: Роспатент

Showing 81-90 of 95 items.
13.07.2019
№219.017.b36b

Электрохимическое устройство для дозирования кислорода в газовой среде и одновременного контроля кислородосодержания газа на входе и выходе из кислородного насоса

Изобретение относится к области электротехники, а именно к электрохимическому устройству для дозирования кислорода в газовой среде и одновременного контроля его содержания на входе и выходе из кислородного насоса, и может быть использовано для очистки газовых смесей от кислорода, а также для...
Тип: Изобретение
Номер охранного документа: 0002694275
Дата охранного документа: 11.07.2019
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
05.09.2019
№219.017.c6fa

Способ получения остеопластического керамического материала на основе фосфата кальция

Изобретение относится к области неорганической химии, а именно к получению материалов на основе стронций-замещенного β-трикальцийфосфата, которые могут быть использованы в качестве тканеинженерных остеопластических материалов для аугментации дефектов трабекулярной костной ткани. На основу из...
Тип: Изобретение
Номер охранного документа: 0002699093
Дата охранного документа: 03.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4d4

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в качестве источника электропитания силовых электрических агрегатов. Батарея содержит корпус, состоящий из двух герметичных оболочек с теплоизоляцией...
Тип: Изобретение
Номер охранного документа: 0002706728
Дата охранного документа: 20.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
Showing 61-64 of 64 items.
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
05.06.2020
№220.018.2476

Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы

Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы. Способ включает синтез гексаборидов лантаноидов из хлоридсодержащего расплава, содержащего ионы бора и ионы лантаноида. В качестве хлоридсодержащего расплава...
Тип: Изобретение
Номер охранного документа: 0002722753
Дата охранного документа: 03.06.2020
24.06.2020
№220.018.29ed

Способ переработки нитридного ядерного топлива

Изобретение относится к ядерной энергетике, в частности, к технологии переработки отработавшего нитридного ядерного топлива и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает конверсию компонентов нитридного топлива в хлориды при температуре не...
Тип: Изобретение
Номер охранного документа: 0002724117
Дата охранного документа: 22.06.2020
+ добавить свой РИД