×
10.03.2013
216.012.2eb2

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине и описывает способ оценки безопасности введения наночастиц меди в организм, заключающийся в определении изменения показателя экспрессии антигена каспазы-3 в микроглиоцитах сенсомоторной зоны коры головного мозга после введения наночастиц меди по сравнению с контрольной группой животных путем подсчета экспрессирующих каспазу-3 микроглиоцитов на условной единице площади идентичных сенсомоторных зон. Предлагаемый способ позволяет определить допустимую дозу вводимого препарата, органы-мишени, выбрать наиболее оптимальный способ введения препарата в организм. 1 з.п. ф-лы, 5 пр., 6 табл., 12 ил.

Изобретение относится к медицине, конкретно к способу оценки безопасности введения наночастиц меди в организм, который устанавливает критерий, позволяющий оценить безопасность введения наночастиц, и может применяться для клинико-фармакологической экспертизы препаратов на основе наночастиц.

Нанотехнологии обладают огромным потенциалом, позволяющим решить многие задачи в различных областях науки, техники и повысить качество жизни человека. Однако новые научные достижения не только способствуют развитию общества, но и ставят человечество перед новыми проблемами. Это, прежде всего, проблема воздействия наноматериалов и наночастиц на качество среды обитания человека, на животный и растительный мир, на качество сельскохозяйственной продукции и воды, а также на здоровье человека. Необходимость изучения последствий действия наночастиц и наноматериалов на живые системы и человека связана с постоянно растущим уровнем производства наноматериалов для различных нужд техники, разработкой новых лекарственных средств в наноформе, с созданием новых пищевых продуктов, парфюмерно-косметической продукции с использованием достижений нанотехнологии.

Интерес к нанообъектам связан с пониманием отличия их физико-химических и биологических свойств как от свойств массивных металлических объектов, так и свойств отдельных атомов. Проведенные нами исследования по влиянию наночастиц на биосистемы позволили выявить их уникальные свойства:

1) наночастицы металлов в 7-50 раз менее токсичны, чем металлы в ионной форме;

2) наночастицы оказывают пролонгированное действие благодаря своей способности осуществлять роль депо элементов в организме;

3) наночастицы, введенные в биотических дозах, стимулируют обменные процессы в организме;

4) наночастицы обладают многофункциональным действием [3, 5].

В настоящее время использование наночастиц металлов в составе биопрепаратов и лекарственных средств представляется перспективным. Однако перечисленные особенности влияния наночастиц на живые системы могут оказывать специфическое действие на органы и ткани, приводящее к развитию различных патологических состояний и даже гибели. Поэтому необходимо найти такие показатели изменения структурно-функционального состояния биосистем, которые позволят установить порог допустимых доз вводимых наночастиц металлов.

Современные исследования токсичности нанообъектов при введении в организм животных ограничены несколькими серьезными работами. Это исследования американских ученых, которые изучали легочную ткань при внутритрахеальной затравке наноуглеродными трубками. Такая затравка приводила к развитию воспалительного процесса в легочной ткани с последующим некрозом и развитием фиброза, что может провоцировать развитие рака легких [13].

В настоящее время токсичность наноматериалов связывают с развитием окислительного стресса и повреждением ДНК [11]. Рассматриваются и другие механизмы токсичности наноматериалов. Например, их повреждающее действие на клеточные мембраны и органеллы связано с усилением транспорта потенциально токсичных компонентов. Возможны также генотоксичность и аллергезирующее действие [6].

Однако до сих пор отсутствуют способ проведения экспертизы и критерии для оценки безопасности введения наночастиц в организм животных. Так, одни исследователи проводят изучение формирования отека мозга, оценивая нарушение проницаемости гематоэнцефалического барьера для наночастиц серебра, меди, алюминия, кремния, углерода и металлических оксидов [12], другие описывают состояние центральной нервной системы при действии наночастиц серебра, меди оксида [15], третьи изучают ответ ДОФ-аминной системы на воздействие наночастиц Mn, Ag, Cu [14], проводят сравнительные исследования токсичности наночастиц, например, меди по сравнению с микрочастицами и ионами металлов [8], изучают изменение биохимических показателей мочи, сыворотки, тканей печени и почек животных при введении наночастиц меди в различных дозах [10], изучают степень повреждения ДНК и цитотоксичность наночастиц оксидов различных металлов [9] и т.д. Поэтому разработка способа оценки безопасности наночастиц металлов при введении в организм живых систем является одной из актуальных задач современной медицины и это позволит установить порог допустимых доз вводимых наночастиц металлов.

Задачей изобретения является разработка способа оценки безопасности введения наночастиц меди в организм, который установит критерии для оценки безопасности введения в организм.

Для решения поставленной задачи предлагается способ оценки безопасности введения наночастиц меди в организм, заключающийся в определении изменения показателя экспрессии антигена каспазы-3 в миоглиоцитах сенсомоторной зоны коры головного мозга после введения наночастиц меди по сравнению с контрольной группой животных путем подсчета экспрессирующих каспазу-3 миоглиоцитов на условной единице площади идентичных сенсомоторных зон.

Нами проведен комплекс гистологических и иммуногистохимических исследований тканей экспериментальных животных при увеличении нагрузки меди в виде наночастиц на организм и, учитывая особенность ответа, обоснован выбор критерия для оценки безопасности введения наночастиц металла в организм животных.

Пример 1. Физико-химические характеристики наночастиц меди

Для исследования влияния наночастиц меди на структурно-функциональное состояние органов и тканей животных, биохимические, гистологические и иммуногистохимические показатели были синтезированы наночастицы меди методом высокотемпературной конденсации с их последующей модификацией кислородом [2, 4]. Методом просвечивающей электронной микроскопии установлено, что наночастицы меди имеют сферическую форму. Средний размер частиц составляет 103.0±2,0 нм. Кристаллической меди в ядре частиц содержится 96.0±4.5%, меди оксида - 4.0±0,4%. Толщина оксидной пленки на поверхности наночастиц меди составляет 6 нм (Таблица 1) [1].

Пример 2. Оценка состояния печени животных при увеличении нагрузки наночастиц меди на организм

Исследования проводили на белых крысах-самцах линии Vistar массой 150-180 г, находящихся на общевиварийном рационе кормления, которым внутримышечно вводили водную суспензию наночастиц меди с периодичностью 1 раз в неделю в дозе 2.0 мг/кг массы животного. Другой группе животных на протяжении 3 суток выпаивали суспензию наночастиц меди в дозе 2.0 мг/кг массы животного. Экспериментальные исследования на животных проводили в соответствии с инструкциями, рекомендуемыми Российским Регламентом, 1987 г., и «The Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996)». Для приготовления водной суспензии наночастиц меди для инъекций и для выпаивания была разработана лабораторная технологическая схема, которая включает следующие этапы: приготовление точной навески нанопорошка, перенесение нанопорошка в воду, последовательное диспергирование суспензии нанопорошка на ультразвуковом диспергаторе УЗДН-2Т в режиме: трехкратное диспергирование по 1 мин с перерывом 3 мин. Отбор проб для исследования структурно-функционального состояния печени проводили через 3 ч, 1 сут, 3 сут, 7 сут после каждой инъекции и через 1 ч, 2 ч после энтерального введения животным водной суспензии наночастиц. В контрольную группу входили животные, которым внутримышечно и энтерально вводили дистиллированную воду в том же объеме, что и опытным животным.

Для исследования структурно-функционального состояния печени пробы ткани фиксировали в 10% нейтральном формалине в течение суток при комнатной температуре. После стандартной гистологической проводки материал заливали в парафин. Парафиновые срезы толщиной 5 мкм окрашивали гематоксилином Майера и эозином. Гликоген в ткани определяли перйодат-Шифф-реакцией по методу Мак-Мануса-Хочкисса-Шабадаша [7]. Для выявления экзогенных частиц меди использовали модифицированный метод окраски парафиновых срезов с бензидином [7]. Для оценки пролиферативной активности клеток печени использовали показатель экспрессии маркера Ki-67. Для выявления готовности клеток к апоптозу оценивали экспрессию каспазы-3. Иммуногистохимические исследования проводили на парафиновых срезах с использованием моноклональных антител и системы визуализации фирмы Bio Genex Super Sensytive Detection System (США) по протоколам фирмы производителя. С использованием набора Apoptag (Plus Peroxidase in situ Apoptosis Detection Kit-S 71010) идентифицировали фрагментированную ДНК в гепатоцитах, согласно протоколу фирмы производителя (Intergen, USA). Проводили подсчет иммунопозитивных клеток среди 1000 и выражали в ‰.

Статистическую обработку полученных данных проводили с использованием пакета программ "Statistica 5,5 for Windows" и программного пакета "MS Excel 2000". Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Достоверными считали результаты при p≤0,05.

Результаты исследований представлены в таблице 2, 3 и на ФИГ. 1, 2, 3, 4. В таблице 2, 3 представлены показатели экспрессии каспазы-3 клеток печени экспериментальных животных при повторных внутримышечном и энтеральном введениях водной суспензии наночастиц меди в дозе 2.0 мг/кг массы животного соответственно. На ФИГ.1, 2, 3, 4 представлены гистологические срезы фрагментов печени крысы через 3 часа после однократного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, фрагментов печени контрольной (а) и опытной (б) крыс на 1 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, фрагментов печени крысы на 1 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, фрагментов перипортальных зон печеночных долек контрольной (а) и опытной крыс (б) через 2 часа после первого энтерального введения наночастиц меди в дозе 2 мг/кг массы животного соответственно.

Нами установлено, что через 3 часа после однократного внутримышечного введения наночастиц меди в васкулярной части перипортальных гепатоцитов и в цитоплазме клеток Купфера печени экспериментальных животных видны наночастицы меди (ФИГ.1). При этом структурных изменений в органе не выявлено. Через 3 суток после однократного внутримышечного введения наночастицы меди в клетках печени не обнаруживаются. Однако в перипортальных гепатоцитах появляются признаки гидропической дистрофии, которая не выявляется при исследовании органа через 7 суток после однократного введения металла. При повторном через неделю внутримышечном введении меди наночастицы выявляются преимущественно в васкулярной части перипортальных гепатоцитов. При этом через сутки после второй инъекции металла в васкулярной части перипортальных гепатоцитов выявляются признаки гидропической дистрофии. Среди гепатоцитов появляются также апоптозные тельца Каунсильмена (ФИГ.2). Это подтверждают иммуногистохимические исследования по выявлению готовности гепатоцитов к клеточной гибели - апоптозу (ФИГ.3). Апоптоз является тем процессом, который в паренхиме печени поддерживает структурный гомеостаз органа. В печени контрольных животных экспрессия антигена каспазы-3 обнаружена только среди центролобулярных гепатоцитов и составляет 0,7±0,03‰. Apoptag - положительные клетки также выявляются среди центролобулярных гепатоцитов и составляют 0,5±0,02‰. После повторного внутримышечного введения наночастиц меди клетки, экспрессирующие антиген каспазы-3, а также дающие положительную реакцию на фрагментированную ДНК, обнаруживаются и среди припортальных гепатоцитов. Различия показателей экспрессии маркеров готовности клеток к апоптозу достоверны по сравнению с контролем в печени животных на 3 и 7 сутки после трехкратного внутримышечного введения наночастиц. Показатели экспрессии увеличиваются в 2 раза (p<0,05) на 7 сутки после трехкратного внутримышечного введения (Таблица 2).

При энтеральном пути введения наночастиц меди через 2 часа после первого введения наблюдались структурные изменения печени с признаками гидропической дистрофии в гепатоцитах перипортальной зоны (ФИГ.4). Через 3 суток после энтерального введения наночастиц меди фиксировалась неизмененная структура органа. Сами наночастицы в гепатоцитах печени отсутствовали, но они обнаруживались в клетках Купфера. При исследовании печени через 2 часа после третьего энтерального введения наночастицы меди присутствовали в клетках Купфера и васкулярной зоне гепатоцитов. При этом признаки дистрофии в клетках отсутствовали. Готовность клеток к апоптозу после трехкратного энтерального введения недостоверно отличается от показателей экспрессии маркеров апоптоза в печени животных контрольной группы (Таблица 3).

Пример 3. Оценка состояния селезенки животных при увеличении нагрузки наночастиц меди на организм

Исследования проводили на белых крысах-самцах линии Vistar массой 150-180 г, находящихся на общевиварийном рационе кормления, которым внутримышечно вводили водную суспензию наночастиц меди с периодичностью 1 раз в неделю в дозе 2.0 мг/кг массы животного. Экспериментальные исследования на животных проводили в соответствии с инструкциями, рекомендуемыми Российским Регламентом, 1987 г., и «The Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996)». Для приготовления водной суспензии наночастиц меди для инъекций и для выпаивания была разработана лабораторная технологическая схема, которая включает следующие этапы: приготовление точной навески нанопорошка, перенесение нанопорошка в воду, последовательное диспергирование суспензии нанопорошка на ультразвуковом диспергаторе УЗДН-2Т в режиме: трехкратное диспергирование по 1 мин с перерывом 3 мин. Отбор проб для исследования структурно-функционального состояния селезенки проводили через 3 ч, 1 сут, 3 сут, 7 сут после каждой инъекции водной суспензии наночастиц. В контрольную группу входили животные, которым внутримышечно вводили дистиллированную воду в том же объеме, что и опытным животным.

Для проведения морфологических и гистологических исследований селезенку фиксировали в 10% нейтральном формалине в течение суток при комнатной температуре. После стандартной гистологической проводки материал заливали в парафин. Парафиновые срезы толщиной 5 мкм окрашивали гематоксилином Майера и эозином. Для выявления экзогенной меди использовали модифицированный метод окраски парафиновых срезов с бензидином [7]. Иммуногистохимические исследования проводили на парафиновых срезах при помощи моноклональных антител (Ki 67, каспаза-3) и системы визуализации Bio Genex Super Sensytive Detection System (США). Для оценки пролиферативной активности клеток белой пульпы селезенки выявляли экспрессию маркера Ki 67. Для выявления готовности клеток к апоптозу выявляли экспрессию каспазы-3. Производили подсчет иммунопозитивных клеток на 1000 и выражали в ‰.

Статистическую обработку полученных данных проводили с использованием пакета программ "Statistica 5,5 for Windows" и программного пакета "MS Excel 2000". Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Достоверными считали результаты при p≤0,05.

Результаты исследований представлены в таблице 4 и на ФИГ.5, 6, 7. В таблице 4 представлены показатели экспрессии каспазы-3 клеток селезенки экспериментальных животных при повторных внутримышечных введениях водной суспензии наночастиц меди в дозе 2.0 мг/кг массы животного. На ФИГ.5, 6, 7 представлены гистологические срезы фрагментов красной пульпы селезенки крысы в первые сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, белой пульпы селезенки крысы на 7 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, белой пульпы селезенки контрольной (а) и опытной (б) крыс на 7 сутки после 12 инъекции наночастиц меди в дозе 2 мг/кг массы животного соответственно.

Нами установлено, что наночастицы меди обнаруживаются в красной пульпе селезенки, преимущественно в ее макрофагах в первые сутки после внутримышечного введения металла и сохраняются в них после последующих введений (ФИГ.5). Однократное введение наночастиц меди не нарушает структурный гомеостаз селезенки, а приводит лишь к умеренному повышению функциональной активности белой пульпы, о чем свидетельствуют повышение ее относительной объемной плотности, повышение относительной объемной плотности герминативных центров, периартериальных лимфоидных муфт и повышенные показатели численности клеток на условной единице площади в этих зонах. Морфометрические показатели белой пульпы после 2 и 3 инъекций наночастиц также свидетельствует о повышении ее функциональной активности. Более значимые изменения морфометрических показателей белой пульпы наблюдаются на 7 сутки после повторного введения наночастиц меди. Увеличение лимфоидных фолликулов после второго введения наночастиц меди происходит не только за счет увеличения герминативных центров, где происходят процессы бластной трансформации и размножения лимфоцитов, но в большинстве фолликулов за счет мантийной и краевой зон, где происходят процессы дифференцировки и выхода клеток в красную пульпу (ФИГ.6).

При иммуногистохимическом исследовании пролиферативной активности клеток лимфоидных фолликулов селезенки с помощью антител Ki-67 выявлено повышение в 2 раза по сравнению с контролем экспрессии Ki-67 у животных на 7 сутки после второго введения наночастиц и понижение в 1,5 раза экспрессии этого маркера у животных на 7 сутки после 12 инъекции наночастиц меди по сравнению с контролем (p<0,05). При исследовании готовности клеток фолликулов к апоптозу выявлено снижение экспрессии каспазы-3 у животных на 7 сутки после второй инъекции наночастиц. На 7 сутки после 12 инъекции увеличивается число клеток лимфоидных фолликулов селезенки, экспрессирующих каспазу-3, что свидетельствует о повышении готовности клеток фолликулов к апоптозу (ФИГ.7, Таблица 4).

Пример 4. Оценка состояния почек животных при увеличении нагрузки наночастиц меди на организм

Исследования проводили на белых крысах-самцах линии Vistar массой 150-180 г, находящихся на общевиварийном рационе кормления, которым внутримышечно вводили водную суспензию наночастиц меди с периодичностью 1 раз в неделю в дозе 2.0 мг/кг массы животного. Другой группе животных на протяжении 3 суток выпаивали суспензию наночастиц меди в дозе 2.0 мг/кг массы животного. Экспериментальные исследования на животных проводили в соответствии с инструкциями, рекомендуемыми Российским Регламентом, 1987 г., и «The Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996)». Для приготовления водной суспензии наночастиц меди для инъекций и для выпаивания была разработана лабораторная технологическая схема, которая включает следующие этапы: приготовление точной навески нанопорошка, перенесение нанопорошка в воду, последовательное диспергирование суспензии нанопорошка на ультразвуковом диспергаторе УЗДН-2Т в режиме: трехкратное диспергирование по 1 мин с перерывом 3 мин. Отбор проб для исследования структурно-функционального состояния печени проводили через 3 ч, 1 сут, 3 сут, 7 сут после каждой инъекции и через 1 ч, 2 ч после энтерального введения животным водной суспензии наночастиц. В контрольную группу входили животные, которым внутримышечно и энтерально вводили дистиллированную воду в том же объеме, что и опытным животным.

Для проведения морфологических и гистологических исследований почку фиксировали в 10% нейтральном формалине в течение суток при комнатной температуре. После стандартной гистологической проводки материал заливали в парафин. Парафиновые срезы толщиной 5 мкм окрашивали гематоксилином Майера и эозином. Для выявления экзогенной меди использовали модифицированный метод окраски парафиновых срезов с бензидином [7]. Иммуногистохимические исследования проводили на парафиновых срезах при помощи моноклональных антител (каспаза-3) и системы визуализации Bio Genex Super Sensytive Detection System (США). Для выявления готовности клеток к апоптозу выявляли экспрессию каспазы-3. Исследования проводили по протоколу фирмы производителя. Производили подсчет иммунопозитивных клеток на 1000 и выражали в ‰.

Статистическую обработку полученных данных проводили с использованием пакета программ "Statistica 5,5 for Windows" и программного пакета "MS Excel 2000". Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Достоверными считали результаты при p≤0,05.

Результаты исследований представлены в таблице 5 и на ФИГ.8, 9, 10, 11. В таблице 5 представлены показатели экспрессии каспазы-3 клетками проксимальных канальцев почек при внутримышечном введении наночастиц меди в дозе 2 мг/кг массы животного. На ФИГ.8, 9, 10, 11 представлены гистологические срезы фрагментов коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного, коркового вещества почки опытной крысы на 7 сутки после третьего внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного соответственно.

Нами установлено, что наночастицы меди при однократном внутримышечном введении металла обнаруживаются в почках в первые сутки после введения в клетках проксимальных канальцев (ФИГ.8). Локально в клетках отдельных канальцев обнаруживаются явления гиалиново-капельной и гидропической дистрофии (ФИГ.9). Однако эти явления не выявляются через 7 суток после введения. Клубочки почек не изменены, но в интерстициальной ткани чаще, чем в контроле, встречаются макрофаги экспрессирующие каспазу-3 (ФИГ.10). После второй и особенно после третьей внутримышечной инъекций наночастиц меди количество канальцев с явлениями белковых дистрофий увеличивается. В канальцах обнаруживаются эпителиоциты с проявлениями некроза, выявляются также локальные повреждения базальной мембраны канальцев (ФИГ.11). Достоверно увеличивается готовность клеток эпителия канальцев к апоптозу. Если в эпителии канальцев контрольной группы животных экспрессия антигена каспазы-3 составила 24,1±0,6‰, то после третьей внутримышечной инъекции наночастиц меди показатели увеличиваются в 2,5 раза (p<0,05) (Таблица 5).

При однократном энтеральном введении наночастиц, так же как при внутримышечном введении, наночастицы обнаруживаются во всех проксимальных канальцах, в отдельных из них наблюдается гиалиново-капельная и гидропическая дистрофия. После трехкратного энтерального введения, наряду с явлениями белковых дистрофий выявляется некроз отдельных эпителиоцитов в канальцах, но повреждений базальной мембраны не наблюдается, что благоприятно в плане прогноза процесса регенерации в этих канальцах. Показатель экспрессии антигена каспазы-3 в проксимальных канальцах увеличивается по сравнению с контролем в 1,6 раза (р<0,05).

Пример 5. Оценка состояния сенсомоторной зоны коры головного мозга при введении наночастиц меди на организм

Исследования проводили на белых крысах-самцах линии Vistar массой 150-180 г, находящихся на общевиварийном рационе кормления, которым однократно внутримышечно вводили водную суспензию наночастиц меди в дозе 2.0 мг/кг массы животного. Экспериментальные исследования на животных проводили в соответствии с инструкциями, рекомендуемыми Российским Регламентом, 1987 г., и «The Guide for the Care and Use of Laboratory Animals (National Academy Press, Washington, D.C., 1996)». Для приготовления водной суспензии наночастиц меди для инъекций была разработана лабораторная технологическая схема, которая включает следующие этапы: приготовление точной навески нанопорошка, перенесение нанопорошка в воду, последовательное диспергирование суспензии нанопорошка на ультразвуковом диспергаторе УЗДН-2Т в режиме: трехкратное диспергирование по 1 мин с перерывом 3 мин. Отбор проб для исследования структурно-функционального состояния сенсомоторной зоны коры головного мозга проводили через 1 сут, 3 сут, 7 сут, 14 сут после однократного внутримышечного введения животным водной суспензии наночастиц в дозе 2.0 мг/кг массы животного. В контрольную группу входили животные, которым внутримышечно вводили дистиллированную воду в том же объеме, что и опытным животным.

После фиксации ткани в нейтральном 10% формалине и стандартной гистологической проводки материал заливали в парафин. Парафиновые срезы толщиной 5 мкм окрашивали гематоксилином Майера и эозином. Для выявления экзогенной меди использовали модифицированный метод окраски парафиновых срезов с бензидином [7]. Иммуногистохимические исследования проводили на парафиновых срезах при помощи моноклональных антител и системы визуализации Bio Genex Super Sensytive Detection System (США). Для выявления готовности клеток к апоптозу выявляли экспрессию каспазы-3. Исследования проводили по протоколу фирмы производителя. Производили подсчет экспрессирующих каспазу-3 микроглиоцитов на условной единице площади идентичных сенсомоторных зон коры.

Статистическую обработку полученных данных проводили с использованием пакета программ "Statistica 5,5 for Windows" и программного пакета "MS Excel 2000". Достоверность различий сравниваемых показателей определяли по t-критерию Стьюдента. Достоверными считали результаты при p≤0,05.

Результаты исследований представлены в таблице 6 и на ФИГ.12. В таблице 6 представлены показатели экспрессии каспазы-3 микроглиоцитами сенсомоторной зоны коры головного мозга при однократном внутримышечном введении наночастиц меди в дозе 2 мг/кг массы животного. На ФИГ.12 представлен гистологический срез фрагмента сенсомоторной зоны коры головного мозга контрольной (а) и опытной (б) крысы на 7 сутки после однократного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На светооптическом уровне в сенсомоторной зоне коры головного мозга структурных изменений у животных опытной группы после однократного внутримышечного введения наночастиц меди по сравнению с контролем не выявлено. Метод окраски с бензидином не дал положительного результата, вероятно, за счет малого количества наночастиц, поступивших в тканевые элементы нервной системы. Однако иммуногистохимическое выявление клеток, экспрессирующих каспазу-3 в сенсомоторной зоне коры головного мозга, позволило обнаружить готовность клеток к запрограммированной гибели среди микроглиоцитов. Нервных клеток, экспрессирующих каспазу-3, в разные сроки после однократного внутримышечного введения наночастиц меди (1, 3, 7, 14 сутки) не обнаружено. Среди микроглиоцитов показатель экспрессии каспазы-3 на 1 сут и 3 сут после введения ноночастиц меди недостоверно увеличен по сравнению с контролем. Самый высокий показатель экспрессии выявлен на 7 сутки после однократного внутримышечного введения наночастиц меди (ФИГ.12). У животных этой группы экспрессия каспазы-3 по сравнению с контролем увеличивается в 3 раза. К 14 суткам экспрессия каспазы-3 среди микроглиоцитов снижается и соответствует показателям контрольных животных (Таблица 6).

Наши результаты комплексных исследований, включающих гистологический и иммуногистохимический контроль тканей животных при внутримышечном и энтеральном введении наночастиц меди, позволили установить, что в исследуемых органах: печени, селезенке, почках, коре головного мозга, обнаруживаются наночастицы. В зависимости от типа ткани, суммарной дозы вводимых наночастиц и времени ответа в них наблюдаются определенные структурные изменения. В то же время для оценки безопасности необходим общий независимо от специфики органа показатель, который отражает начавшиеся в ответ на введение наночастиц структурные изменения. В качестве такого критерия нами предложен показатель готовности клеток к апоптозу, запрограммированной гибели клеток, определяемый по экспрессии антигена каспазы-3. Нами установлено, что при увеличении нагрузки наночастиц меди на организм происходит достоверное усиление экспрессии каспазы-3 в микроглиоцитах (макрофагах мозга) коры головного мозга через 7 суток после однократного внутримышечного введения наночастиц меди (доза 2 мг/кг массы животного), в клетках печени через 3, 7 суток после 3-кратного внутримышечного введения наночастиц меди (суммарная доза - 6 мг/кг массы животного), в проксимальных канальцах почек через 3 ч, 1, 3, 7 суток после 3-кратного внутримышечного введения наночастиц меди (суммарная доза - 6 мг/кг массы животного), в клетках селезенки через 3 ч, 1, 3, 7 суток после 12-кратного внутримышечного введения наночастиц меди (суммарная доза - 24 мг/кг массы животного). Полученные данные свидетельствуют о необходимости контроля в первую очередь ткани мозга через неделю после однократной инъекции наночастиц меди. И хотя изменения носят обратимый характер (в последующие 7 суток показатель апоптоза микроглиоцитов снижается до уровня контроля), можно считать дозу 2 мг/кг предельно допустимой для внутримышечного введения наночастиц меди. Правомочность выбора критерия безопасности подтверждается данными показателя апоптоза клеток печени при сравнении ответа на разные способы введения наночастиц в организм животных. Отсутствие достоверных изменений показателя апоптоза при энтеральном введении наночастиц меди свидетельствует о более безопасном (энтеральном) пути введения наночастиц меди в организм животных по сравнению с внутримышечным.

Таким образом, на основании проведенных исследований становится очевидно, что показатель готовности клеток к апоптозу отражает начавшиеся структурные нарушения в ответ на введение наночастиц меди, независимо от специфики органа. По этому показателю можно судить об органах-мишенях, допустимой дозе вводимого металла, о различиях в ответ на разные способы введения наночастиц в организм. Это дает нам основание считать показатель готовности клеток к апоптозу, оцененному по изменению экспрессии антигена каспазы-3, в качестве критерия в способе оценки безопасности введения наночастиц меди в организм живых систем.

Краткое описание фигур

ФИГ.1. Гистологический срез фрагмента печени крысы через 3 часа после однократного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.1 видно, что в васкулярной части перипортальных гепатоцитов и в цитоплазме клеток Купфера печени экспериментальных животных наблюдается аморфное сине-голубое окрашивание (указано стрелкой) экзогенной меди при использовании модифицированного метода окраски с бензидином гистологических срезов фрагментов печени.

ФИГ.2. Гистологический срез фрагментов печени контрольной (а) и опытной (б) крысы на 1 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.2 видно, что по сравнению с контролем (а) в гепатоцитах опытных крыс (б) наблюдается вакуолизация цитоплазмы (указано стрелкой) и выявляются оксифильные апоптозные тельца Каунсильмена (1).

ФИГ.3. Гистологический срез фрагмента печени опытной крысы на 1 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.3 видно, что при иммуногистохимическом выявлении готовности клеток к апоптозу в коричневый цвет окрашена цитоплазма гепатоцита (указана стрелкой), экспрессирующего каспазу-3.

ФИГ.4. Гистологические срезы фрагментов перипортальных зон печеночных долек контрольной (а) и опытной (б) крыс через 2 часа после первого энтерального введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.4 видно, что по сравнению с контролем (а) в гепатоцитах перипортальных зон у опытных крыс наблюдается вакуолизация цитоплазмы, которая не обнаруживается в перивенулярной зоне. Стрелками указаны клетки с выраженными признаками гидропической дистрофии.

ФИГ.5. Гистологический срез фрагмента красной пульпы селезенки крысы в первые сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.5 видно, что при использовании модифицированного метода окраски с бензидином гистологических срезов фрагментов красной пульпы селезенки преимущественно в макрофагах наблюдается аморфное сине-голубое окрашивание экзогенной меди (указано стрелками).

ФИГ.6. Гистологический срез фрагмента белой пульпы селезенки крысы на 7 сутки после повторного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.6. наблюдается увеличение лимфоидных фолликулов не только за счет увеличения герминативных центров (а), где происходят процессы бластной трансформации и размножения лимфоцитов, но в большинстве фолликулов за счет мантийной и краевой зон (б), где происходят процессы дифференцировки и выхода клеток в красную пульпу.

ФИГ.7. Гистологический срез фрагмента белой пульпы селезенки контрольной (а) и опытной (б) крысы на 7 сутки после 12 инъекции наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.7. видно, что в белой пульпе селезенки опытной (б) крысы увеличивается число клеток, экспрессирующих каспазу-3 (указаны стрелками), что свидетельствует о готовности клеток к апоптозу.

1 - центральная артерия белой пульпы.

ФИГ.8. Гистологический срез фрагмента коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.8. видно, что в клетках проксимальных канальцев почек обнаружено разное по интенсивности аморфное сине-голубое окрашивание цитоплазмы (указано стрелками) выявляемой экзогенной меди при использовании модифицированного метода окраски с бензидином.

ФИГ.9. Гистологический срез фрагмента коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.9 видно, что в клетках отдельных канальцев обнаруживаются явления гиалиново-капельной и гидропической дистрофии (указано стрелками).

ФИГ.10. Гистологический срез фрагмента коркового вещества почки опытной крысы через сутки после первого внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.10 видно, что в интерстициальной соединительной ткани чаще, чем в контроле, выявляются клетки, экспрессирующие каспазу-3 (указано стрелками).

ФИГ.11. Гистологический срез фрагмента коркового вещества почки опытной крысы на 7 сутки после третьего внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.11 видно, что в клетках канальцев обнаруживаются явления гиалиново-капельной и гидропической дистрофии (1) и местами их некроз (указано стрелками).

ФИГ.12. Гистологический срез фрагмента сенсомоторной зоны коры контрольной (а) и опытной (б) крысы на 7 сутки после однократного внутримышечного введения наночастиц меди в дозе 2 мг/кг массы животного.

На ФИГ.12 видно, что в сенсомоторной зоне коры головного мозга опытной крысы (б) по сравнению с контролем (а) в большем количестве выявляются микроглиоциты, экспрессирующие каспазу-3 (указаны стрелками).

ЛИТЕРАТУРА


СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
СПОСОБ ОЦЕНКИ БЕЗОПАСНОСТИ ВВЕДЕНИЯ НАНОЧАСТИЦ МЕДИ В ОРГАНИЗМ
Источник поступления информации: Роспатент

Showing 31-40 of 49 items.
25.08.2017
№217.015.abc8

Способ выращивания растений с использованием наночастиц металлов и питательная среда для его осуществления

Группа изобретений относится к области био- и нанотехнологий в растениеводстве, используется в аэропонных и гидропонных технологиях. В способе выращивают растения с использованием наночастиц путем проращивания семян и последующего выращивания растений в асептических условиях на агаризованной...
Тип: Изобретение
Номер охранного документа: 0002612319
Дата охранного документа: 06.03.2017
25.08.2017
№217.015.b6ab

Аэрогидропонный способ выращивания зеленых кормов

Изобретение относится к сельскому хозяйству, в частности к аэрогидропонному способу выращивания зеленых кормов. Увлажняют посевной материал и вегетативную массу католитом при активном непрерывном в течение 7-8 суток барботаже раствора воздухом. С целью сохранности свойств катодного раствора...
Тип: Изобретение
Номер охранного документа: 0002614778
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.c404

Способ подготовки корма к скармливанию для молодняка крупного рогатого скота

Изобретение относится к сельскому хозяйству, в частности к кормопроизводству, и может быть использовано при кормлении крупного рогатого скота. Способ подготовки корма для молодняка крупного рогатого скота к скармливанию предусматривает скармливание в составе рациона дробленого экструдированного...
Тип: Изобретение
Номер охранного документа: 0002617344
Дата охранного документа: 24.04.2017
26.08.2017
№217.015.d854

Способ диагностики элементозов молодняка крупного рогатого скота по элементному составу шерсти

Изобретение относится к животноводству, а именно к способу оценки состояния здоровья молодняка крупного рогатого скота. Способ предусматривает использование в качестве диагностической биосреды шерсти животного, исследование образцов шерсти по 25 химическим элементам и оценку результатов...
Тип: Изобретение
Номер охранного документа: 0002622719
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d96b

Способ выращивания зеленых гидропонных кормов с использованием наноматериалов

Изобретение относится к сельскохозяйственному производству. Способ осуществляют путем обработки семян электрохимически активированным катодным раствором наночастиц сплава железа и кобальта в процентном соотношении соответственно 70 на 30. Лабораторные испытания показали высокую эффективность...
Тип: Изобретение
Номер охранного документа: 0002623471
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e2ce

Способ оценки содержания белков межклеточного матрикса в регенерирующих тканях при анализе цифровых изображений иммуногистохимических микропрепаратов в программе adobe photoshop

Изобретение относится к области экспериментальной медицины, а именно к морфологии и иммуногистохимии. Для сравнительной оценки содержания белков межклеточного матрикса в регенерирующих тканях на разных сроках репаративного процесса осуществляют фотографирование иммуногистохимических препаратов....
Тип: Изобретение
Номер охранного документа: 0002626145
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e8a1

Способ снижения распадаемости жиров корма в рубце жвачных животных

Изобретение относится к отрасли сельского хозяйства, в частности к способу производства кормовых высокоэнергетических жировых добавок жвачным животным. Способ включает барогидротермическую обработку масложировой кормовой смеси, содержащей (в %) ячменя дробленого - 86, фуза-отстоя – 8,...
Тип: Изобретение
Номер охранного документа: 0002627575
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.e8a8

Способ предпосевной обработки семян козлятника восточного с использованием наночастиц железа

Изобретение относится к сельскому хозяйству. Предложен способ предпосевной обработки семян козлятника восточного Galega orientalis Lam, включающий их скарификацию. Скарифицированные семена обрабатывают стимулятором роста гибберелином ГАЗ в концентрации менее 0,001 мас.% и суспензией наночастиц...
Тип: Изобретение
Номер охранного документа: 0002627556
Дата охранного документа: 08.08.2017
26.08.2017
№217.015.ec96

Способ разделения ионов органических и биоорганических соединений по приращению ионной подвижности и транспортировки этих ионов внутрь сверхзвукового газового потока

Изобретение относится к спектрометрии ионной подвижности в газах и масс-спектрометрии. Основой изобретения является разделение ионов из внешнего источника в спектрометре приращения ионной подвижности (СПИП) цилиндрически симметричной геометрии с секционированным внешним электродом, к секциям...
Тип: Изобретение
Номер охранного документа: 0002468464
Дата охранного документа: 27.11.2012
29.12.2017
№217.015.f2c3

Кишечная канюля

Изобретение относится к животноводству и экспериментальной хирургии, в частности к устройству для физиологических исследований на сельскохозяйственных животных и последующего изучения функционирования разных отделов кишечной трубки. Кишечная канюля включает Т-образную кишечную канюлю, состоящую...
Тип: Изобретение
Номер охранного документа: 0002637831
Дата охранного документа: 07.12.2017
Showing 31-40 of 77 items.
19.01.2018
№218.016.0617

Способ коррекции элементозов коров

Изобретение относится к области ветеринарии и может быть использовано для нормализации минерального обмена в организме коров. Проводят определение элементного состава шерсти методами атомно-эмиссионной и масс-спектрометрии, выявляются животные с содержанием предельно допустимых норм по цинку...
Тип: Изобретение
Номер охранного документа: 0002630987
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.1176

Способ приготовления кормовой добавки для молодняка крупного рогатого скота

Изобретение относится к отрасли сельского хозяйства и может быть использовано для увеличения продуктивности сельскохозяйственных животных. Способ приготовления кормовой добавки для молодняка крупного рогатого скота заключается в смешивании высокодисперсных частиц кобальта с размером не более...
Тип: Изобретение
Номер охранного документа: 0002634052
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1664

Средство стимулирования роста сельскохозяйственных культур, преимущественно пшеницы

Изобретение относится к области сельского хозяйства. Предложено средство стимулирования роста яровой пшеницы, представляющее собой водный раствор биологически активных веществ. В качестве биологически активных веществ используют наночастицы железа и оксида кремния в весовом соотношении 1:1,...
Тип: Изобретение
Номер охранного документа: 0002635103
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.260a

Способ оценки заживления переломов трубчатых костей крыс в эксперименте

Изобретение относится к области медицины, а именно к морфологии, иммуногистохимии, экспериментальной травматологии и ортопедии. Для оценки заживления переломов трубчатых костей крыс в эксперименте на разных сроках репаративного процесса используют цифровую микрофотографию иммуногистохимического...
Тип: Изобретение
Номер охранного документа: 0002644279
Дата охранного документа: 08.02.2018
13.02.2018
№218.016.2618

Средство для лечения и профилактики неалкогольной жировой болезни печени

Изобретение относится к фармацевтической промышленности, в частности к средству для лечения и профилактики неалкогольной жировой болезни печени. Средство лечения и профилактики неалкогольной жировой болезни печени на основе водного извлечения листьев подорожника наибольшего (Plantago maxima...
Тип: Изобретение
Номер охранного документа: 0002644282
Дата охранного документа: 08.02.2018
10.05.2018
№218.016.4389

Способ экстракции из твердого растительного сырья композиции химических соединений для подавления зоопатогенных бактерий

Изобретение относится к фармацевтической промышленности, а именно к способу получения экстракта из коры дуба, подавляющего зоопатогенные бактерии. Способ получения экстракта из коры дуба, подавляющего зоопатогенные бактерии, включающий обработку предварительно измельченной коры дуба...
Тип: Изобретение
Номер охранного документа: 0002649812
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.44ed

Способ выращивания зеленных гидропонных кормов с использованием пептидов

Изобретение относится к сельскому хозяйству. Предложен способ выращивания зеленных гидропонных кормов, с использованием пептидов, согласно которому семена ячменя замачивают в течение не менее 2 часов, в суспензии, содержащей Нуклеопептид с концентрацией не менее 0,02 мас.%,...
Тип: Изобретение
Номер охранного документа: 0002649980
Дата охранного документа: 06.04.2018
10.05.2018
№218.016.4ab7

Способ обработки зернового корма для жвачных животных

Изобретение относится к отрасли сельского хозяйства, а именно к способу обработки зернового корма для жвачных животных. Способ включает смешивание 35-45% измельченного зернового корма от суточной нормы рациона с 1% раствором молочной кислоты в соотношении мас.% 75:25, выдержку полученной смеси...
Тип: Изобретение
Номер охранного документа: 0002651605
Дата охранного документа: 23.04.2018
18.05.2018
№218.016.510b

Способ повышения продуктивности цыплят-бройлеров

Изобретение относится к птицеводству, в частности к способу повышения продуктивности цыплят-бройлеров. Способ включает скармливание в составе основного рациона экстракта коры дуба в суточной дозе 2,5 мл/кг живой массы и фермента Глюколюкс при норме ввода 5 г/10 кг корма в течение всего периода...
Тип: Изобретение
Номер охранного документа: 0002653372
Дата охранного документа: 08.05.2018
29.05.2018
№218.016.5610

Способ повышения воспроизводительной способности коров

Изобретение относится к области биотехнологии. Изобретение представляет собой способ повышения воспроизводительной способности коров, включающий оценку обменного содержания свинца и кадмия в организме по уровню их концентрации в шерсти, при уровне концентрации свинца выше 0,038 мкг/г и кадмия...
Тип: Изобретение
Номер охранного документа: 0002654573
Дата охранного документа: 21.05.2018
+ добавить свой РИД