×
27.02.2013
216.012.29f0

Результат интеллектуальной деятельности: ПЛАЗМОХИМИЧЕСКИЙ РЕАКТОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химического машиностроения, а именно к плазмохимическим реакторам, и может быть использовано при получении тонкодисперсных материалов. Реактор включает реакционную камеру, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в плазмотроне. Нижняя часть канала ввода теплоносителя выполнена в виде сужающегося под углом, выбранным из интервала 8-12 градусов, сопла и расширяющееся под углом, выбранным из интервала 8-12 градусов, сопло в верхней части реакционной камеры образуют сопло Лаваля, в котором длина сужающегося сопла принята в соответствии с соотношением L=(D-d)/tg(α/2), а длина расширяющегося сопла принята в соответствии с соотношением L=(D-d)/tg(β/2), где L - длина сужающегося сопла, L - длина расширяющегося сопла, D - диаметр входного сечения сужающегося сопла, D - диаметр выходного сечения расширяющегося сопла, d - диаметр критического сечения сопла Лаваля, α - угол конусности сужающегося сопла, β - угол конусности расширяющегося сопла. Форсунки открываются в расширяющееся сопло, при этом точка пересечения осей форсунок с центральной вертикальной осью реакционной камеры расположена в расширяющемся сопле и удалена от критического сечения сопла Лаваля на расстояние, не превышающее диаметра этого сечения. Изобретение позволяет создать наилучшие условия для интенсификации процесса смешения капель раствора с плазменным потоком. 1 ил.
Основные результаты: Плазмохимический реактор, включающий реакционную камеру, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в плазмотроне, при этом ось канала совпадает с центральной вертикальной осью реакционной камеры, форсунки для подачи в реакционную камеру диспергированного раствора реагентов, установленные симметрично и под углом к вертикальной оси реакционной камеры, при этом оси форсунок пересекаются в одной точке на центральной вертикальной оси реакционной камеры, и патрубок вывода пылепарогазовой смеси из реакционной камеры, отличающийся тем, что нижняя часть канала ввода теплоносителя в виде сужающегося под углом, выбранным из интервала 8÷12 градусов, сопла и расширяющееся под углом, выбранным из интервала 8÷12 градусов, сопло в верхней части реакционной камеры образуют сопло Лаваля, при этом длина сужающегося сопла принята в соответствии с соотношением L=(D-d)/tg(α/2), а длина расширяющегося сопла принята в соответствии с соотношением L=(D-d)/tg(β/2), где L - длина сужающегося сопла, L - длина расширяющегося сопла, D - диаметр входного сечения сужающегося сопла, D - диаметр выходного сечения расширяющегося сопла, d - диаметр критического сечения сопла Лаваля, α - угол конусности сужающегося сопла, β - угол конусности расширяющегося сопла, форсунки открываются в расширяющееся сопло, при этом точка пересечения осей форсунок с центральной вертикальной осью реакционной камеры расположена в расширяющемся сопле и удалена от критического сечения сопла Лаваля на расстояние, не превышающее диаметра этого сечения.

Изобретение относится к области химического машиностроения, а именно к плазмохимическим реакторам, и может быть использовано при получении тонкодисперсных материалов.

Известен плазмохимический реактор для получения нанодисперсных порошков (RU 2138929 C1, H05H 1/24, Н05В 7/16, 24.06.97). Реактор содержит плазмотрон, форсунки для диспергирования раствора реагентов, реакционную камеру и подсоединенный к ее нижнему торцу патрубок вывода пылегазовой смеси. Плазменный поток поступает в реакционную камеру. Перерабатываемый раствор подают в него форсунками под углом к оси реакционной камеры. В верхнюю часть реакционной камеры по касательной подают сжатый газ. Пылепарогазовая смесь приобретает поступательно-вращательное движение, и жидкие капли конвертируются в твердые частицы. Затем пылепарогазовая смесь поступает в патрубок вывода пылегазовой смеси, имеющий участок в виде колена, и освобождается в нем от некондиционной фракции порошка. Кондиционный продукт поступает далее по патрубку вывода пылепарогазовой смеси в устройство разделения порошка и парогазовой части смеси. Получают порошки с очень большим разбросом по дисперсности, вследствие этого порошки имеют низкие технологические качества при изготовлении высокоточной керамики. Процесс сопровождается налипанием расплавленного продукта на внутренние поверхности реакционной камеры.

Известен плазмохимический реактор для получения нанодисперсных порошков (RU 21428945 C1, B01J 19/08, H05H 1/00, В05В 7/00, 20.12.99) - прототип. Реактор содержит плазменный генератор, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, при этом ось канала совпадает с центральной вертикальной осью реактора, форсунки, для каждой из которых в корпусе реактора выполнены каналы однонаправленного тангенциального обдува с выходом под срез форсунок и каналы спутно-поперечного тангенциального обдува распыленных реагентов. Каждая форсунка снабжена дополнительным щелевым соплом обдува, расположенным коаксиально форсунке. Форсунки установлены симметрично и под углом к вертикальной оси реакционной камеры, при этом оси форсунок пересекаются в одной точке на оси реактора. Реакционная камера имеет патрубок вывода пылепарогазовой смеси. Данное техническое решение направлено на предотвращение налипания продукта на сопла форсунок путем создания дополнительного их обдува. Введение дополнительных потоков газа неизбежно приводит к снижению температуры в реакционной камере и к ухудшению вследствие этого технологических качеств получаемого порошка.

Задачей изобретения является расширение арсенала средств получения плазмохимических порошков.

Поставленную задачу решают тем, что в плазмохимическом реакторе, включающем реакционную камеру, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в плазмотроне, при этом ось канала совпадает с центральной вертикальной осью реакционной камеры, форсунки для подачи в реакционную камеру диспергированного раствора реагентов, установленные симметрично и под углом к вертикальной оси реакционной камеры, при этом оси форсунок пересекаются в одной точке на центральной вертикальной оси реакционной камеры, и патрубок вывода пылепарогазовой смеси из реакционной камеры, нижняя часть канала ввода теплоносителя в виде сужающегося под углом, выбранным из интервала 8-12 градусов, сопла и расширяющееся под углом, выбранным из интервала 8-12 градусов, сопло в верхней части реакционной камеры образуют сопло Лаваля, при этом длина сужающегося сопла принята в соответствии с соотношением L=(D-d)/tg(α/2), а длина расширяющегося сопла принята в соответствии с соотношением L1=(D1-d)/(β/2), где L - длина сужающегося сопла, L1 - длина расширяющегося сопла, D - диаметр входного сечения сужающегося сопла, D1 - диаметр выходного сечения расширяющегося сопла, d - диаметр критического сечения сопла Лаваля, α - угол конусности сужающегося сопла, β - угол конусности расширяющегося сопла, выходные отверстия форсунок открываются в расширяющееся сопло, при этом точка пересечения осей форсунок с центральной вертикальной осью реакционной камеры расположена в расширяющемся сопле и удалена от критического сечения сопла Лаваля на расстояние, не превышающее диаметра этого сечения.

На фигуре изображен плазмохимический реактор.

Реактор включает реакционную камеру 1, канал 2 ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в плазмотроне (не показан), форсунки 3 для подачи в реакционную камеру диспергированного раствора реагентов и патрубок 4 вывода пылепарогазовой смеси из реакционной камеры. Ось 5 канала 2 совпадает с центральной вертикальной осью 6 реакционной камеры. Форсунки установлены симметрично и под углом к оси 6, оси 7 форсунок пересекаются в точке 8 на оси 6. Нижняя часть канала 2 ввода теплоносителя выполнена в виде сужающегося под углом α (угол конусности), выбранным из интервала 8-12 градусов, сопла 9, имеющего длину L и диаметр входного сечения D. Верхняя часть реакционной камеры содержит расширяющееся под углом β (угол конусности), выбранным из интервала 8÷12 градусов, сопло 10, имеющее длину L1 и диаметр выходного сечения D1. Сопла 9 и 10 образуют сопло Лаваля с критическим сечением, имеющим диаметр d. Величины L, D, d и α связаны соотношением L=(D-d)/tg(α/2), а величины L1, D1, d и β - соотношением L1=(D1-d)/tg(β/2). Выходные отверстия 11 форсунок 3 открываются в расширяющееся сопло 10, при этом точка 8 пересечения осей форсунок с центральной вертикальной осью 6 реакционной камеры 1 расположена в расширяющемся сопле и удалена от критического сечения сопла Лаваля на расстояние λ, не превышающее диаметра d этого сечения.

Устройство работает следующим образом. Плазменный теплоноситель, генерируемый ВЧИ-плазмотроном, поступает через канал ввода теплоносителя 2 и его нижнюю часть в виде сопла 9 в расширяющееся сопло 10 верхней части реакционной камеры 1. Теплоноситель в сужающемся сопле 9 имеет дозвуковую скорость. После прохождения критического сечения сопла Лаваля скорость плазменного теплоносителя возрастает до сверхзвуковой скорости. В этот момент в плазменный поток форсунками 3 в расширяющееся сопло 10 вводят диспергированный водный раствор реагентов, который под действием сверхзвукового потока плазменного носителя дробится на еще более мелкие частицы, при этом происходит выравнивание частиц жидкости по форме и размерам, смещение размеров частиц в наноразмерный диапазон. Откондиционированный в верхней части реакционной камеры поток частиц жидкости поступает в среднюю часть реакционной камеры, где за счет тепла, переданного при взаимодействии с теплоносителем, происходит его обезвоживание с образованием твердых сухих частиц реагента высокой дисперсности, при этом не происходит расплавления частиц, образования агломератов и спеков. Полученную при взаимодействии пылепарогазовую смесь через патрубок 4 выводят из реакционной камеры и направляют в систему улавливания порошков (в циклонах-осадителях).

Как показали экспериментальные исследования, заявляемая геометрия сопла Лаваля (соотношения между длинами сопл, диаметрами входного, выходного и критического сечений, углами конусности сопл), а также заявляемое расстояние от критического сечения сопла Лаваля до точки пересечения осей форсунок с центральной вертикальной осью реакционной камеры (это точка начала взаимодействия плазменного теплоносителя с диспергированным раствором реагентов), обусловливая подачу перерабатываемого раствора в сформированный сверхзвуковой плазменный поток, создают наилучшие условия для интенсификации процесса смешения капель раствора с плазменным потоком, а это обеспечивает в свою очередь более однородный по форме (преобладает шаровидная форма частиц) и размерам состав получаемых порошков.

Плазмохимический реактор, включающий реакционную камеру, канал ввода в верхнюю часть реакционной камеры плазменного теплоносителя, генерированного в плазмотроне, при этом ось канала совпадает с центральной вертикальной осью реакционной камеры, форсунки для подачи в реакционную камеру диспергированного раствора реагентов, установленные симметрично и под углом к вертикальной оси реакционной камеры, при этом оси форсунок пересекаются в одной точке на центральной вертикальной оси реакционной камеры, и патрубок вывода пылепарогазовой смеси из реакционной камеры, отличающийся тем, что нижняя часть канала ввода теплоносителя в виде сужающегося под углом, выбранным из интервала 8÷12 градусов, сопла и расширяющееся под углом, выбранным из интервала 8÷12 градусов, сопло в верхней части реакционной камеры образуют сопло Лаваля, при этом длина сужающегося сопла принята в соответствии с соотношением L=(D-d)/tg(α/2), а длина расширяющегося сопла принята в соответствии с соотношением L=(D-d)/tg(β/2), где L - длина сужающегося сопла, L - длина расширяющегося сопла, D - диаметр входного сечения сужающегося сопла, D - диаметр выходного сечения расширяющегося сопла, d - диаметр критического сечения сопла Лаваля, α - угол конусности сужающегося сопла, β - угол конусности расширяющегося сопла, форсунки открываются в расширяющееся сопло, при этом точка пересечения осей форсунок с центральной вертикальной осью реакционной камеры расположена в расширяющемся сопле и удалена от критического сечения сопла Лаваля на расстояние, не превышающее диаметра этого сечения.
ПЛАЗМОХИМИЧЕСКИЙ РЕАКТОР
Источник поступления информации: Роспатент

Showing 1-1 of 1 item.
27.10.2014
№216.013.0220

Камерный модуль реактора синтеза гликолида и лактида

Изобретение относится к области химии и может быть использовано для промышленного синтеза мономеров гликолида и лактида, применяемых в качестве сырья для получения биоразлагаемых полимеров различного состава. Камерный модуль реактора синтеза гликолида или лактида включает корпус камерного...
Тип: Изобретение
Номер охранного документа: 0002531942
Дата охранного документа: 27.10.2014
Showing 21-30 of 31 items.
27.02.2014
№216.012.a6ca

Способ извлечения америция из отходов

Изобретение относится к способам извлечения америция в виде диоксида америция из радиоактивных отходов химико-металлургического производства. Способ включает растворение отходов в концентрированной азотной кислоте, оксалатное осаждение из раствора, сушку и прокаливание оксалата америция до...
Тип: Изобретение
Номер охранного документа: 0002508413
Дата охранного документа: 27.02.2014
10.04.2014
№216.012.b057

Способ фиксации пульпы в открытом бассейне-хранилище радиоактивных отходов

Изобретение относится к атомной энергетике, к способам обращения с радиоактивными отходами, в частности к способам фиксации пульпы открытых бассейнов-хранилищ радиоактивных отходов путем засыпки грунтом. Способ включает рассечение бассейна разделительными дамбами, достигающими дна бассейна, на...
Тип: Изобретение
Номер охранного документа: 0002510858
Дата охранного документа: 10.04.2014
27.04.2014
№216.012.beb1

Способ подготовки урансодержащего сырья к экстракционной переработке

Изобретение относится к переработке урансодержащего сырья, а именно к способу подготовки сырья к экстракционной переработке. Способ включает выщелачивание урана азотной кислотой и отделение водной фазы от нерастворенного остатка. Затем ведут смешивание нерастворенного остатка с фторсодержащим...
Тип: Изобретение
Номер охранного документа: 0002514557
Дата охранного документа: 27.04.2014
27.05.2014
№216.012.ca9b

Способ переработки кремнийсодержащего химического концентрата природного урана

Изобретение относится к способу переработки кремнийсодержащего химического концентрата природного урана с повышенным содержанием кремния. Способ включает выщелачивание концентрата водным раствором азотной кислоты при повышенной температуре с получением пульпы, состоящей из твердой и водной фаз,...
Тип: Изобретение
Номер охранного документа: 0002517633
Дата охранного документа: 27.05.2014
20.07.2014
№216.012.dfd3

Сигнализатор уровня жидкого азота

Изобретение относится к технике измерения уровня жидкости и может быть использовано в автоматических системах автоматики и аварийной сигнализации для измерения уровня жидкого азота. Сигнализатор уровня жидкого азота включает терморезисторы, расположенные на контролируемых уровнях в дьюаре и...
Тип: Изобретение
Номер охранного документа: 0002523085
Дата охранного документа: 20.07.2014
10.12.2014
№216.013.0ff1

Тепловая защита

Изобретение относится к огнезащитным противопожарным средствам и может быть использовано при транспортировании резервуаров с горючими и радиационно опасными газами и жидкостями при избыточном внутреннем давлении, сжиженных газов при криогенных температурах. Предлагаемая тепловая защита состоит...
Тип: Изобретение
Номер охранного документа: 0002535498
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1809

Способ переработки огарков фторирования

Изобретение относится к способам переработки уран-фторсодержащих растворов, полученных от растворения огарков фторирования в производстве гексафторида урана. Способ включает растворение огарков в растворе азотной кислоты, извлечение урана из фторсодержащего азотнокислого раствора путем...
Тип: Изобретение
Номер охранного документа: 0002537581
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.264f

Керметная композиция

Изобретение относится к области металлургии, а именно к керметным композициям для изготовления деталей, подвергающихся воздействию эрозии и коррозии при высокой температуре. Керметная композиция, выраженная формулой (PQ)(RS), включает связующую фазу (RS) и распределенную в ней в виде частиц...
Тип: Изобретение
Номер охранного документа: 0002541260
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.280b

Способ обнаружения утечки газообразного гексафторида урана и/или фтористого водорода и детектор для обнаружения утечки

Использование: для обнаружения утечки гексафторида урана и/или фтористого водорода. Сущность изобретения заключается в том, что детектор состоит из цилиндрической диэлектрической подложки, слоя электропроводного лакокрасочного материала с диспергированным порошкообразным графитовым...
Тип: Изобретение
Номер охранного документа: 0002541708
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a21

Противоточный реактор с кипящим слоем

Изобретение относится к химическому машиностроению и может быть использовано в технологии восстановления оксидов урана, гидрофторирования в кипящем слое. Противоточный реактор с кипящим слоем содержит вертикальный обогреваемый корпус, состоящий из царг, разделенный на секции перфорированными...
Тип: Изобретение
Номер охранного документа: 0002542242
Дата охранного документа: 20.02.2015
+ добавить свой РИД