×
20.02.2013
216.012.27d7

Результат интеллектуальной деятельности: СПОСОБ ОЦЕНКИ СТЕПЕНИ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ ТВЕРДЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки. Сущность: осуществляют приготовление шлифа в зоне внедрения индентора, внедрение индентора в испытуемый образец и определение глубины отпечатка. Шлиф приготавливают на торце испытуемого образца, поверхность шлифа выполняют перпендикулярной к испытуемой поверхности образца. Используют индентор в виде ножа, имеющего лезвие с сечением в виде равнобедренного треугольника, который вводят в испытуемый образец по нормали к его испытуемой поверхности на глубину h, превышающую глубину упрочненного слоя h, создавая при внедрении индентора по обе стороны от его отпечатка зоны пластической деформации. При введении индентора, линию, образованную его лезвием, ориентируют перпендикулярно поверхности шлифа, а на шлифе определяют: точку О максимальной глубины h отпечатка индентора, оставленную лезвием индентора, точку В границы зон деформированного и недеформированного материала на поверхности испытуемого образца и точку А края отпечатка индентора на поверхности испытуемого образца. Определяют границу зон деформированного и недеформированного материала, а затем определяют угол общей зоны деформации β=∟АОВ. На шлифе по месту преломления границы зон деформированного и недеформированного материала определяют точку B перехода от деформированной зоны основного материала к деформированной зоне упрочненного поверхностного слоя, соединяют точку О и B прямой и определяют угол деформации основного материала β=∟AOB и по соотношению углов β и β судят о степени упрочнения поверхностного слоя ε, применяя формулу: ε=β/β. Технический результат: обеспечение оперативного и достоверного определения характеристик упрочнения поверхностного слоя исследуемых материалов. 11 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для экспресс-определения физико-механических свойств твердых материалов, в частности для оценки степени упрочнения поверхностного слоя деталей после защитно-упрочняющей обработки.

Известно, что пластическая деформация материала поверхностного слоя детали после различных видов размерной или упрочняющей обработки характеризуется изменением степени пластической деформации по глубине поверхностного слоя. Упрочнение поверхностного слоя оценивают определяя по глубину и степень наклепа, а интенсивность наклепа - по глубине поверхностного слоя - градиентом наклепа. При этом, основным способом определения механических характеристик поверхностного слоя является измерение микротвердости (например, с использованием индентора в виде алмазной пирамидки). Исследование степени упрочнения по глубине поверхностного слоя оценивается на практике измерением микротвердости на микрошлифе, выполненном в виде косого среза под углом 0°30'-2° [Справочник технолога-машиностроителя. В 2-х томах. T.1. / Под ред. А.Г.Косиловой и Р.КМещерякова - 4-е изд. переработанное и дополн. - М.: Машиностроение, 1986. 656 с. (стр.100)].

Известен способ определения физико-механических свойств поверхности твердых материалов, при котором испытуемый материал нагружают с заданной скоростью посредством сферического индентора, измеряют диаметр и глубину остаточного отпечатка на поверхности испытуемого материала, по которым судят о свойствах материала (см. патент РФ №2141638, кл. G01N 3/48, опубл. 1999).

Известен также способ определения механических характеристик поверхности материалов, включающий внедрение индентора в исследуемый материал, регистрацию кинематических характеристик ударного вдавливания и определение механических характеристик материала. При этом расчет механических характеристик производится с учетом ориентации материала относительно индентора и энергии пластического деформирования (см. патент РФ №2145071, кл. G01N 3/42, опубл. 2000).

Известен способ определения физико-механических свойств поверхности твердых материалов, преимущественно металлов, заключающийся в том, что в испытуемый материал внедряют индентор, измеряют диаметр и глубину остаточного отпечатка исследуемой точки на поверхности испытуемого материала и определяют физико-механические свойства (см. патент РФ №2080581, кл. G01N 3/48, опубл. 1997).

Наиболее близким из известных по своей технической сущности и достигаемому результату является выбранный в качестве прототипа способ оценки степени упрочнения поверхностного слоя твердых материалов, преимущественно металлов, включающий приготовление шлифа, внедрение индентора в испытуемый образец и определение глубины отпечатка [Справочник технолога-машиностроителя. В 2-х томах. T.1. / Под ред. А.Г.Косиловой и Р.КМещерякова - 4-е изд. перераб. и дополн. - М.: Машиностроение, 1986. 656 с. (стр.110-111)].

Недостатком указанных способов является значительная трудоемкость оценки характеристик упрочненного поверхностного слоя, поскольку это связано с приготовлением наклонного шлифа и пошаговым измерением микротвердости по глубине поверхностного слоя по поверхности шлифа. Кроме того, известный способ ограничен функциональными возможностями оценки параметров поверхностного слоя, дает усредненные значения характеристик упрочнекния по слоям, поскольку индентор, внедряясь в материал, охватывает сразу несколько уровней поверхностного слоя. Кроме того, точечный характер внедрения индентора (в качестве которого используется алмазная пирамидка), имеет случайный характер, связанный с неоднородностью твердости испытуемого материала, что также вносит погрешность в результаты оценки свойств поверхностного слоя.

Задача данного изобретения состоит в создании способа, обеспечивающего возможность оперативного и достоверного определения характеристик упрочнения поверхностного слоя исследуемых материалов.

Техническим результатом предлагаемого изобретения является обеспечение оперативного и достоверного определения характеристик упрочнения поверхностного слоя исследуемых материалов

Технический результат достигается тем, что в способе оценки степени упрочнения поверхностного слоя твердых материалов, преимущественно металлов, включающем приготовление шлифа в зоне внедрения индентора, внедрение индентора в испытуемый образец и определение глубины отпечатка, в отличие от прототипа, шлиф приготавливают на торце испытуемого образца, поверхность шлифа выполняют перпендикулярной к испытуемой поверхности образца, причем используют индентор в виде ножа, имеющего лезвие с сечением в виде равнобедренного треугольника с углом острия либо 45°, либо 60°, либо 90°, который вводят в испытуемый образец по нормали к его испытуемой поверхности на глубину ho, превышающую глубину упрочненного слоя hуп, создавая при внедрении индентора по обе стороны от его отпечатка зоны пластической деформации, причем при введении индентора, линию, образованную его лезвием, ориентируют перпендикулярно поверхности шлифа, а на шлифе определяют: точку О максимальной глубины ho отпечатка индентора, оставленную лезвием индентора, точку В границы зон деформированного и недеформированного материала на поверхности испытуемого образца и точку А края отпечатка индентора на поверхности испытуемого образца, определяют границу зон деформированного и недеформированного материала, а затем определяют угол общей зоны деформации βобщ=∟АОВ и на шлифе по месту преломления границы зон деформированного и недеформированного материала определяют точку B1 перехода от деформированной зоны основного материала к деформированной зоне упрочненного поверхностного слоя, соединяют точку О и B1 прямой и определяют угол деформации основного материала βосн=∟AOB1 и по соотношению углов βобщ и βосн судят о степени упрочнения поверхностного слоя εβ, применяя формулу: εβобщосн.

Технический результат достигается тем, что в способе оценки степени упрочнения поверхностного слоя твердых материалов индентор вводят на глубину ho, в два раза превышающую глубину упрочненного слоя hуп, дополнительно определяют угол градиента упрочнения βуп=∟DB1B, по величине которого судят об интенсивности изменения зоны упрочнения,

где точка D лежит на пересечении прямой OB1 с испытуемой поверхностью образца,

а о величине упрочнения i-го слоя, расположенного на глубине hi от испытуемой поверхности образца, судят по отношению значений В1iСi/AiCi или по отношению значений В1iСiiВ1i,

где - B1iCi расстояние между границей зон деформированного и недеформированного материала и линией OB1, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; АiСi, - расстояние между границей зон деформированного и недеформированного материала и линией ОА, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; AiB1i, - расстояние между линией ОА и линией OB1, измеренное на поверхности торца-шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; hi - глубина i-го слоя; ОС - граница зон деформированного и недеформированного материала, причем с целью увеличения достоверности оценки проводят аналогичные измерения и расчеты на поверхности торца-шлифа на симметрично расположенной относительно отпечатка зоне деформации.

Технический результат достигается тем, что в способе оценки степени упрочнения поверхностного слоя твердых материалов используют индентор, имеющего лезвие с углом острия 90°, или используют индентор, имеющего лезвие с углом острия, выбираемым в диапазоне от 20° до 90°.

Заявленная совокупность существенных признаков находится в прямой причинно-следственной связи к достигаемому результату.

Сравнение заявленного изобретения с прототипом позволило установить соответствие его критерию "новизна", так как оно не известно из уровня техники.

Предложенный способ является промышленно применимым существующими средствами и соответствует критерию "изобретательский уровень", т.к. он явным образом не следует из уровня техники, при этом из последнего не выявлено каких-либо преобразований, характеризуемых отличительными от наиболее близкого аналога существенными признаками, на достижение указанного технического результата.

Таким образом, данное техническое решение соответствует установленным условиям патентоспособности изобретения.

Других известных технических решений аналогичного назначения с подобными существенными признаками заявителем не обнаружено. Изобретение иллюстрируется чертежами, на которых изображено: на фигуре 1 представлена схема внедрения индентора в испытуемый образец, на фигуре 2 - отпечаток от индентора на образце, на фигуре 3 - схема оценки зоны деформации.

На фигурах 1-3 обозначено: 1 - испытуемый образец; 2 - индентор (призматический нож); 3 - нормаль к поверхности испытуемого образца (ось индентора; направление внедрения индентора); 4 - поверхность шлифа (торцевая поверхность образца); 5 - исходная поверхность образца; 6 - зона пластической деформации; 7 - бугор (наплыв) зоны деформации испытуемого образца; 8 - линия, образованная лезвием индентора; 9 - граница зоны деформации; 10 - лунка на образце; α - угол острия (заточки) индентора; ho - глубина внедрения индентора; hуп - глубина упрочненного слоя; О - точка максимальной глубины ho отпечатка индентора, оставленного лезвием индентора; В - точка границы зон деформированного и недеформированного материала на поверхности испытуемого образца; А - точка края отпечатка индентора на поверхности испытуемого образца; βобщ - угол общей зоны деформации (βобщ=∟АОВ); B1 - точка перехода от деформированной зоны основного материала к деформированной зоне упрочненного поверхностного слоя; βосн - угол деформации основного материала (βосн=∟AOB1); βуп - угол градиента упрочнения (βуп=∟DB1B); B1iCi расстояние между границей зон деформированного и недеформированного материала и линией OB1, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; AiCi, - расстояние между границей зон деформированного и недеформированного материала и линией ОА, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; hi - глубина i-го слоя; ОС - граница зон деформированного и недеформированного материала; (аналогично буквами со штрихами обозначены параметры симметричной области отпечатка индентора), незакрашенной стрелкой обозначена сила, действующая на индентор.

Предлагаемый способ оценки степени упрочнения поверхностного слоя твердых материалов, преимущественно металлов, осуществляется в следующей последовательности: вначале на торцевая поверхности испытуемого образце 1 (фиг.1) в зоне внедрения индентора 2 приготовливают шлиф 4, при этом поверхность шлифа 4 выполняют перпендикулярной к испытуемой поверхности 5 образца 1. Используют индентор 2 в виде ножа, имеющего лезвие с сечением в виде равнобедренного треугольника с углом α. Угол α выбирают из диапазона от 20° до (наиболее оптимальным углом, в общем случае является угол α=90°, однако, для частных случаев испытания материала и более глубокого изучения свойств или других целей исследования используют любой из углов в диапазоне от от 20° до 90°). Внедрение индентора 2 в испытуемый образец 1, производят по нормали 3 к его испытуемой поверхности 5 на глубину ho, превышающую глубину упрочненного слоя hуп (фиг.2 и фиг.3), создавая при внедрении индентора 2 по обе стороны от его отпечатка зоны пластической деформации 6. При введении индентора 2 линию 8 (OO1), образованную его лезвием, ориентируют перпендикулярно поверхности шлифа 4, а на шлифе 4 определяют (фиг.3): точку О максимальной глубины hо, отпечатка индентора 2, оставленную лезвием индентора 2, точку В границы зон деформированного и недеформированного материала на поверхности испытуемого образца и точку А края отпечатка индентора 2 на поверхности 5 испытуемого образца 1, определяют границу зон деформированного и недеформированного материала. Затем определяют угол общей зоны деформации βобщ=∟АОВ и на шлифе 4 по месту преломления границы зон деформированного и недеформированного материала определяют точку B1 перехода от деформированной зоны основного материала к деформированной зоне упрочненного поверхностного слоя, соединяют точку О и B1 прямой и определяют угол деформации основного материала βосн=∟AOB1 и по соотношению углов βобщ и βосн судят о степени упрочнения поверхностного слоя εβ, применяя формулу: εβобщосн. Для обеспечения возможности сравнения свойств основного и упрочненного частей материала образца 1 индентор 2 вводят на глубину hо, в два раза превышающую глубину упрочненного слоя hуп. При этом проявляется картина особенностей деформации упрочненных и неупрочненных участков образца.

При испытаниях также дополнительно определяют угол градиента упрочнения βуп=∟DB1B, по величине которого судят об интенсивности изменения зоны упрочнения,

где точка D лежит на пересечении прямой OB1 с испытуемой поверхностью образца.

Кроме того, для более глубокого исследования поверхностного слоя образца 1 производят оценку величины упрочнения i-го слоя, расположенного на глубине hi от испытуемой поверхности образца, о которой судят по отношению значений В1iСi/AiCi,

где - В1iСi расстояние между границей зон деформированного и недеформированного материалов и линией OB1, измеренное на поверхности шлифа в направлении параллельном исходной испытуемой поверхности образца на глубине hi; AiCi, - расстояние между границей зон деформированного и недеформированного материала и линией ОА, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; hi - глубина i-го слоя; ОС - граница зон деформированного и недеформированного материала.

Для повышения достоверности оценки свойств испытуемого образца проводят аналогичные измерения и расчеты на поверхности шлифа на симметрично расположенной относительно отпечатка зоне деформации.

При испытании образца 1 индентор 2 устанавливается в выбранной точке A0 поверхности испытуемого образца 1, затем с заданным усилием индентор 2 внедряется по нормали 3, параллельной продольной оси индентора на заданную глубину h0.

При внедрении индентора 2 в испытуемый образец 1 в последнем образуется отпечаток с бугром 7. При этом зона деформации в области отпечатка индентора распространяется вдоль исходной поверхности 5 неравномерно (фиг.2 и фиг.3). Более упрочненные участки поверхностного слоя материала образца 1 перемещаются вдоль поверхности 5 на большую величину, а менее упрочненные - на меньшую. При этом минимальное перемещение наблюдается у неупрочненной части (сердцевины) материала образца 1. Поэтому свойства неупрочненной части материала образца 1 (фиг.2 и фиг.3) могут быть оценены углом βосн - уголом деформации основного материала (βосн=∟AOB1). Свойства части поверхностного слоя материала образца, имеющего максимальное упрочнение, дает угол βобщ - угол общей зоны деформации (βобщ=∟АОВ). Поэтому степень упрочнения материала εβ может оцениваться как отношение этих углов: εβобщосн. Чем больше значение εβ, тем больше упрочнение металла поверхностного слоя. Интенсивность изменения зоны упрочнения может быть оценена величиной угола градиента упрочнения βуп=∟DB1B. Чем больше значение βуп, тем выше интенсивность изменения упрочненной зоны поверхностного слоя металла образца (обработанной детали). Более того, при необходимости степень упрочнения материала образца может быть оценена по отношению значений В1iСi/AiCi, на заданной глубине hi (фиг.2 и фиг.3). Для повышения достоверности оценки степени упрочнения поверхностного слоя материала образца проводят аналогичные измерения и расчеты на поверхности шлифа на симметрично расположенной относительно отпечатка зоне деформации (фиг.2 и фиг.3). При испытаниях образцов, в зависимости от поставленных целей и задач (контроля, испытания, исследования диапазона свойств материалов и т.д.) можно использовать либо только один вид индентора, имеющего лезвие с углом острия 90°, либо индентор, имеющий лезвие с углом острия, выбираемым в диапазоне от 20° до 90°, либо набор инденторов, имеющих с различными углами острия лезвий, выбираемыми в диапазоне от 20° до 90°.

Пример. Для оценки степени упрочнения поверхностного слоя металлических образцов с упрочненным поверхностным слоем были проведены следующие испытания. На секторах из цилиндрических образцов и плоских образцах, упрочненных по различным вариантам, приготавливались шлифы в зоне внедрения индентора, затем производили внедрение индентора в испытуемый образец, определяли глубину отпечатка и производили измерения параметров отпечатка и зоны деформации на поверхности шлифов, согласно методики, описанной в предложенном способе. Для облегчения оценки параметров отпечатка и деформированной зоны образца в результате внедрения индентора, шлиф в зоне отпечатка фотографировали и на фотографиях шлифов производили необходимые замеры. Шлиф приготавливали на торце испытуемого образца, поверхность шлифа выполняли перпендикулярной к испытуемой поверхности образца. Для испытаний использовали индентор в виде ножа, имеющего лезвие с сечением в виде равнобедренного треугольника. Индентор вводили в испытуемый образец по нормали к его испытуемой поверхности на глубину ho, превышающую глубину упрочненного слоя hуп, создавая при внедрении индентора по обе стороны от его отпечатка зоны пластической деформации. При введении индентора в образец, линию, образованную его лезвием ориентировали перпендикулярно поверхности шлифа. На шлифе определяли: точку О максимальной глубины ho отпечатка индентора, оставленную лезвием индентора; точку В границы зон деформированного и недеформированного материала на поверхности испытуемого образца и точку А края отпечатка индентора на поверхности испытуемого образца; определяли границу зон деформированного и недеформированного материала, а затем определяли угол общей зоны деформации βобщ=∟АОВ, и на шлифе по месту преломления границы зон деформированного и недеформированного материала определяли точку B1 перехода от деформированной зоны основного материала к деформированной зоне упрочненного поверхностного слоя. Соединяли точку О и B1 прямой и определяли угол деформации основного материала βосн=∟AOB1, и по соотношению углов βобщ и βосн судили о степени упрочнения поверхностного слоя εβ, применяя формулу: εβобщосн (таблица).

Индентор в поверхностный слой образца вводили на различную глубину и предварительно оценивали глубину зоны упрочнения. Для большей четкости картины деформации в зоне отпечатка индентор вводили на глубину ho, в два раза превышающую глубину упрочненного слоя hуп.

Дополнительно определяли угол градиента упрочнения βуп=∟DB1B, по величине которого судили об интенсивности изменения зоны упрочнения (таблица).

О величине упрочнения i-го слоя, расположенного на глубине hi от испытуемой поверхности образца, судили по отношению значений В1iСiiСi,

где - B1iCi расстояние между границей зон деформированного и недеформированного материала и линией OB1, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; AiCi, - расстояние между границей зон деформированного и недеформированного материала и линией ОА, измеренное на поверхности шлифа в направлении, параллельном исходной испытуемой поверхности образца на глубине hi; hi - глубина i-го слоя; ОС - граница зон деформированного и недеформированного материала.

Проводили аналогичные измерения и расчеты на поверхности шлифа на симметрично расположенной относительно отпечатка зоне деформации. При испытаниях использовали инденторы, имеющие лезвия со следующими углами острия: от 15° (неудовлетворительный результат (Н.Р.)); 20° (удовлетворительный результат (У.Р.)); 30° (У.Р.); 60° (У.Р.); 90° (У.Р.); 100° (Н.Р.).

Упрочнение поверхностного слоя образцов проводили методами поверхностного пластического деформирования и ионной имплантации с последующим постимплантационным отжигом.

В качестве цилиндрических образцов использовались образцы длинами 50 мм и 100 мм и диаметрами: 20 мм, 40 мм, 70 мм, 120 мм. Плоские образцы имели прямоугольное сечение 4 мм × 10 мм, 6 мм × 10 мм и длину 50 мм.

В качестве исходных материалов для изготовления образцов использовались углеродистые и низколегированные стали, а также легированные стали, алюминиевые и медные сплавы (ионной имплантации подвергались только легированные стали).

В таблице в качестве примера приведены значения результатов измерений отпечатка и параметров зоны деформации при угле острия лезвия индентора α=90°, а также результаты оценки параметров упрочнения поверхностного слоя образцов из углеродистой стали.

№ п/п Материал образца и вид обработки hуп, мкм βобщ, ° βосн, ° εβ, % βyп, °
1 2 3 4 5 6 7
1 Сталь 3 (ППД - обработка роликами - режим 1) 0,35 26 18 144 24
2 Сталь 3 (ППД - обработка роликами - режим 2) 0,45 29 17 171 27
3 Сталь 3 (ППД дробеструйная) 0,40 31 19 163 29
4 Сталь 45 (ППД - обработка роликами - режим 1) 0,40 33 21 157 26
5 Сталь 45 (ППД - обработка роликами - режим 2) 0,50 34 22 155 27
6 Сталь 45 (ППД дробеструйная) 0,45 32 20 160 30

Аналогичные результаты были получены и для других исследуемых материалов.

Таким образом, использование перечисленных выше существенных признаков предлагаемого способа позволило достичь технического результата предлагаемого изобретения - обеспечения оперативного и достоверного определения характеристик упрочнения поверхностного слоя исследуемых материалов.


СПОСОБ ОЦЕНКИ СТЕПЕНИ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ ТВЕРДЫХ МАТЕРИАЛОВ
СПОСОБ ОЦЕНКИ СТЕПЕНИ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ ТВЕРДЫХ МАТЕРИАЛОВ
СПОСОБ ОЦЕНКИ СТЕПЕНИ УПРОЧНЕНИЯ ПОВЕРХНОСТНОГО СЛОЯ ТВЕРДЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 21-30 of 76 items.
20.02.2014
№216.012.a166

Способ изготовления армированного прирабатываемого уплотнения турбомашины

Изобретение относится к порошковой металлургии, в частности к изготовлению прирабатываемых уплотнений турбомашин. Может использоваться в машиностроении, в частности в качестве уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных...
Тип: Изобретение
Номер охранного документа: 0002507033
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ac95

Надбандажное лабиринтное уплотнение для паровой турбины

Лабиринтное надбандажное уплотнение для паровой турбины содержит уплотнительный кольцевой гребешок и уплотняющие блоки. Гребешок выполнен или установлен на бандаже лопаток ступени ротора турбины. Уплотняющие блоки установлены с уплотняющим радиальным зазором относительно кольцевого гребешка...
Тип: Изобретение
Номер охранного документа: 0002509896
Дата охранного документа: 20.03.2014
27.08.2014
№216.012.eea2

Способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом

Изобретение относится к порошковой металлургии, в частности к изготовлению металлических изделий из порошков селективным лазерным спеканием. Наносят слой керамического порошка, проводят селективное спекание на заданных участках слоя и удаляют указанный материал из неспеченных участков. Между...
Тип: Изобретение
Номер охранного документа: 0002526909
Дата охранного документа: 27.08.2014
20.11.2014
№216.013.071e

Способ обработки лопатки газотурбинного двигателя

Изобретение относится к электрофизическим и электрохимическим методам обработки, в частности к способу размерной и упрочняющей обработки лопаток ГТД, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих...
Тип: Изобретение
Номер охранного документа: 0002533223
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.12fd

Способ оценки тяжести течения и возможного исхода ретинопатии у недоношенных детей

Изобретение относится к медицине, а именно к офтальмологии и неонатологии, и может быть использовано для оценки тяжести течения и возможного исхода ретинопатии у недоношенных детей. Для этого на первом этапе субтотальной витреоэктомии проводят забор проб стекловидного тела и анализ его...
Тип: Изобретение
Номер охранного документа: 0002536284
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1e1d

Способ повышения износостойкости резьбовой поверхности детали из легированных сталей

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки и нанесения износостойких покрытий на резьбовые поверхности деталей, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает подготовку поверхности под нанесение...
Тип: Изобретение
Номер охранного документа: 0002539137
Дата охранного документа: 10.01.2015
10.05.2015
№216.013.4ada

Способ изготовления металлического изделия послойным лазерным нанесением порошкового материала

Изобретение относится к области лазерной обработки материалов и может быть использовано для изготовления металлических изделий из порошков селективным лазерным спеканием. Наносят первый порошковый материал и селективно спекают на заданных участках слоя. Удаляют первый порошковый материал из...
Тип: Изобретение
Номер охранного документа: 0002550669
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4adb

Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления

Изобретение относится к изготовлению металлических изделий из порошков послойным селективным лазерным спеканием. Способ включает образование оболочки для формируемого изделия путем нанесения слоя из первого порошкового материала и его спекание по всей рабочей поверхности. Нанесение слоя из...
Тип: Изобретение
Номер охранного документа: 0002550670
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4d76

Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей

Изобретение относится к технологии электролитно-плазменного полирования поверхности деталей из легированных сталей. Способ включает полирование пера лопатки электролитно-плазменным методом, включающИм погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали...
Тип: Изобретение
Номер охранного документа: 0002551344
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.50c8

Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении. Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов включает ионную очистку поверхности с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002552201
Дата охранного документа: 10.06.2015
Showing 21-30 of 142 items.
10.06.2015
№216.013.50c8

Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов

Изобретение относится к машиностроению и может быть использовано в авиационном двигателестроении. Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов включает ионную очистку поверхности с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002552201
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.50c9

Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Изобретение относится к машиностроению. Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии включает ионную имплантацию пера лопатки с последующим нанесением ионно-плазменного многослойного покрытия в виде заданного количества пар слоев,...
Тип: Изобретение
Номер охранного документа: 0002552202
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.50ca

Способ полирования деталей из титановых сплавов

Изобретение относится к полированию деталей из титановых сплавов и может быть использовано для полирования деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности деталей и нанесением защитных ионно-плазменных покрытий. Способ...
Тип: Изобретение
Номер охранного документа: 0002552203
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58b7

Способ нанесения покрытия и электродуговой испаритель для осуществления способа

Изобретение относится к технике и технологии нанесения защитных ионно-плазменных покрытий и может быть применено в машиностроении, например, для защиты рабочих и направляющих лопаток турбомашин. Способ включает размещение деталей в вакуумной камере, приложение к деталям потенциала...
Тип: Изобретение
Номер охранного документа: 0002554252
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.6086

Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета

Изобретение относится к области гальванотехники и может быть использовано для удаления полимерных покрытий с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, а также при восстановлении особо ответственных деталей летательных...
Тип: Изобретение
Номер охранного документа: 0002556251
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6424

Способ получения упрочненного слоя на резьбовой поверхности детали из легированных сталей

Изобретение относится к машиностроению и может быть использовано для защитно-упрочняющей обработки деталей с резьбовыми поверхностями, применяемых, например, в ролико-винтовых и шарико-винтовых передачах. Способ включает формирование геометрии резьбы резьбообразующим инструментом, ее обработку...
Тип: Изобретение
Номер охранного документа: 0002557183
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6d90

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки металлов и сплавов, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, а также режущего инструмента и штамповой оснастки....
Тип: Изобретение
Номер охранного документа: 0002559606
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d96

Способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии

Изобретение относится к способам защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии. Проводят подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием в электролите в виде 4 - 8% водного раствора сульфата аммония при напряжении...
Тип: Изобретение
Номер охранного документа: 0002559612
Дата охранного документа: 10.08.2015
20.10.2015
№216.013.86e8

Способ электролитно-плазменного удаления полимерных покрытий с поверхности детали из легированных сталей

Изобретение относится к технологии электролитно-плазменного удаления защитных покрытий из полимерных материалов с поверхности деталей из легированных сталей, в частности из нержавеющих трип-сталей высокой прочности и пластичности, и может быть использовано при восстановлении особо ответственных...
Тип: Изобретение
Номер охранного документа: 0002566139
Дата охранного документа: 20.10.2015
27.11.2015
№216.013.946b

Способ изготовления полой металлической лопатки турбомашины

Изобретение может быть использовано при изготовлении полых, например, авиационных вентиляторных лопаток. На поверхность участков, не подвергаемых соединению при диффузионной сварке, наносят антиадгезионное покрытие. После диффузионной сварки пакета, собранного из заготовок корыта, спинки и...
Тип: Изобретение
Номер охранного документа: 0002569614
Дата охранного документа: 27.11.2015
+ добавить свой РИД