×
10.02.2013
216.012.24ad

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике реакторных измерений, а именно к устройствам для измерений реактивности реактора - реактиметрам. Устройство содержит последовательно соединенные между собой аналого-цифровой преобразователь (1), частотно-импульсный измеритель (14), блок деления (5), промежуточный вычислитель реактивности (12). При этом аналого-цифровой преобразователь (14) соединен соответственно с блоком деления (5) и промежуточным вычислителем реактивности (12), последовательно соединенными задатчиком групповых параметров запаздывающих нейтронов (9), сумматором значений амплитуд для групп запаздывающих нейтронов (13), делителем счета детектора и сумм амплитуд (6), логарифматором (10), первым дифференциатором (8), последовательно соединенными блоком начала отсчета (11), детектором нейтронов (7) и последовательно соединенными вторым дифференциатором (2), вычислителем поправочного слагаемого (3), вычислителем реактивности (4). Блок начала отсчета (11) соответственно соединен с промежуточным вычислителем реактивности (4) и блоком делителя счета детектора и сумм амплитуд (6), задатчик групповых параметров запаздывающих нейтронов (9) - с промежуточным вычислителем реактивности (4), первый дифференциатор (8) соединен с вычислителем поправочного слагаемого (3), а промежуточный вычислитель реактивности (12) соединен со вторым дифференциатором (2). Технический результат - повышение точности измерения реактивности ядерного реактора. 2 ил.
Основные результаты: Устройство для измерения реактивности ядерного реактора, содержащее последовательно соединенные между собой аналого-цифровой преобразователь, частотно-импульсный измеритель, блок деления, промежуточный вычислитель реактивности, причем аналого-цифровой преобразователь соединен соответственно с блоком деления и промежуточным вычислителем реактивности, отличающееся тем, что устройство дополнительно снабжено последовательно соединенными задатчиком групповых параметров запаздывающих нейтронов, сумматором значений амплитуд для групп запаздывающих нейтронов, делителем счета детектора и сумм амплитуд, логарифматором, первым дифференциатором, а также последовательно соединенными блоком начала отсчета, детектором нейтронов и последовательно соединенными вторым дифференциатором, вычислителем поправочного слагаемого, вычислителем реактивности, причем блок начала отсчета соответственно соединен с промежуточным вычислителем реактивности и блоком делителя счета детектора и сумм амплитуд, задатчик групповых параметров запаздывающих нейтронов соединен с промежуточным вычислителем реактивности, первый дифференциатор соединен с вычислителем поправочного слагаемого, а промежуточный вычислитель реактивности соединен со вторым дифференциатором.

Изобретение относится к технике реакторных измерений, а именно к устройствам для измерений реактивности реактора - реактиметрам.

Известен цифровой реактиметр, содержащий несколько детектирующих каналов, работающих как в импульсном, так и в токовом режиме; блок, задающий параметры запаздывающих нейтронов для различных версий групповых констант, а также блоки, предназначенные для регистрации измеряемого значения сигналов реактивности и представления их в форме, удобной для целей аварийной защиты и анализа вводимых реактивностей [Казанский Ю.А., Матвеенко И.П., Тютюнников П.Л., Шокодько А.Г., К учету пространственных эффектов при измерении реактивности методом обращенного решения уравнения кинетики. Атомная энергия, т.51, вып.6, декабрь 1981, с.387-389].

Недостатком известного устройства является то, что при измерении больших отрицательных реактивностей в активных зонах быстрых реакторов с существенным влиянием пространственных эффектов невозможно в режиме реального времени определить перекос нейтронного поля, что ведет к пространственной зависимости измеряемого значения реактивности, что особенно сильно проявляется при измерении на реакторах, имеющие большие геометрически размеры.

Наиболее близким по технической сущности к заявляемому устройству является устройство для измерения реактивности ядерного реактора, содержащее аналого-цифровой преобразователь с промежуточным преобразованием аналогового сигнала в частоту импульсов, на вход которого подан аналоговый сигнал, а цифровой выход соединен с вычислителем реактивности, где для повышения точности измерения введены блок деления и частотно-импульсный измеритель периода ядерного реактора, вход которого соединен с частотным выходом аналого-цифрового преобразователя, а выход - с входом делителя блока деления, вход делимого которого соединен с цифровым выходом аналого-цифрового преобразователя, выход блока деления соединен со вторым входом вычислителя реактивности [Авторское свидетельство СССР №1,069,004 от 23.01.84 «Измеритель реактивности ядерного реактора»].

Недостатком известного устройства является относительно низкая точность измерения значений реактивности, обусловленная зависимостью от влияния пространственных эффектов.

Задачей изобретения является повышение точности измерения реактивности ядерного реактора путем введения дополнительных блоков, позволяющих в режиме реального времени вычислять значение реактивности с учетом изменения эффективности детекторов.

Технический результат заключается в повышении точности измерения реактивности ядерного реактора.

Для устранения указанного недостатка в устройстве для измерения реактивности ядерного реактора, содержащем последовательно соединенные между собой аналого-цифровой преобразователь, частотно-импульсный измеритель, блок деления, промежуточный вычислитель реактивности, причем аналого-цифровой преобразователь соединен соответственно с блоком деления и промежуточным вычислителем реактивности, предлагается дополнительно снабдить устройство:

- последовательно соединенными задатчиком групповых параметров запаздывающих нейтронов, сумматором значений амплитуд для групп запаздывающих нейтронов, делителем счета детектора и сумм амплитуд, логарифматором, первым дифференциатором,

- последовательно соединенными блоком начала отсчета, детектором нейтронов,

- последовательно соединенными вторым дифференциатором, вычислителем поправочного слагаемого, вычислителем реактивности,

- блок начала отсчета соединить с промежуточным вычислителем реактивности и делителем счета детектора и сумм амплитуд,

- задатчик групповых параметров запаздывающих нейтронов соединить с промежуточным вычислителем реактивности,

- первый дифференциатор соединить с вычислителем поправочного слагаемого,

- промежуточный вычислитель реактивности соединить со вторым дифференциатором.

Принципиальная схема устройства представлена на фигуре 1, на которой приняты следующие обозначения: 1 - аналого-цифровой преобразователь, 2 - второй дифференциатор, 3 - вычислитель поправочного слагаемого, 4 - вычислитель реактивности, 5 - блок деления, 6 - делитель счета детектора и сумм амплитуд, 7 - детектор нейтронов, 8 - первый дифференциатор, 9 - задатчик групповых параметров запаздывающих нейтронов, 10 - логарифматор, 11 - блок начала отсчета, 12 - промежуточный вычислитель реактивности, 13 - сумматор значений амплитуд для групп запаздывающих нейтронов, 14 - частотно-импульсный измеритель периода реактора.

На фигуре 2 представлены результаты обработки данных. Макет данного устройства использовался при измерении реактивности на макете быстрого реактора.

Производилось вычисление реактивности для различнорасположенных детекторов в режиме реального времени (D1 R, D2 R). Для сравнения приведены данные реактиметра (D1 RES, D2 RES) с учетом пространственных эффектов, однако вычисление реактивности происходит уже по алгоритму неработающим в режиме реального времени.

Устройство для измерения реактивности ядерного реактора содержит последовательно соединенные между собой аналого-цифровой преобразователь 1, предназначенный для преобразования аналогового сигнала в цифровой, частотно-импульсный измеритель 14, предназначенный для измерения частоты импульсов, блок деления 5, предназначенный для вычисления периода реактора, промежуточный вычислитель реактивности 12, предназначенный для вычисления реактивности по точечной модели, последовательно соединенные блоки задатчика групповых параметров запаздывающих нейтронов 9, предназначенного для введения групповых параметров запаздывающих нейтронов αi, βi различных баз констант нейтронных библиотек, сумматора значений амплитуд для групп запаздывающих нейтронов 13, предназначенного для суммирования введенных значений параметров запаздывающих нейтронов, делителя счета детектора и сумм амплитуд 6, логарифматора 10, предназначенного для вычисления натурального логарифма, первого дифференциатора 8, предназначенного для дифференцирования данных, полученных в логарифматоре, последовательно соединенные блоки начала отсчета 11, предназначенные для записи времени с момента начала отсчета времени, детектора нейтронов 7, предназначенного для получения данных с нейтронных детекторов, последовательно соединенные блоки: второго дифференциатора 2, предназначенного для вычисления изменения реактивности, полученной из уравнения точечной кинетики, вычислителя поправочного слагаемого 3, предназначенного для вычисления поправочного слагаемого, вычислителя реактивности 4, предназначенного для вычисления измеряемой реактивности с учетом влияния пространственных эффектов. Аналого-цифровой преобразователь 1 соединен соответственно с блоком деления 5 и промежуточным вычислителем реактивности 12. Блок начала отсчета 11 соответственно соединен с промежуточным вычислителем реактивности 12 и блоком делителя счета детектора и сумм амплитуд 6. Блок задатчика групповых параметров запаздывающих нейтронов 9 также соединен с промежуточным вычислителем реактивности 12. Первый дифференциатор 8 соединен с вычислителем поправочного слагаемого 3. Промежуточный вычислитель реактивности 12 соединен со вторым дифференциатором 2.

Сущность изобретения поясняется следующим образом. При скачкообразном законе изменения эффективности детектора абсолютную погрешность (Δρ) измерения реактивности, связанную с изменением эффективности детектирования (δω), в чем и проявляется влияние пространственных эффектов, можно определить следующим образом:

Поскольку при t>0 ρ0 - величина постоянная и , то, продифференцировав (1) по t, получим второе уравнение в виде

Из (2) получим

Подстановка (3) в (1) даст нам простое соотношение для реактиметра, подавляющего влияние пространственного эффекта,

В уравнении (4) первое слагаемое - результат вычисления реактивности обычным («точечным») реактиметром, а второе - результат корректировки этого значения при ступенчатом изменении эффективности детектирования. Все величины, входящие в (4), определяются в рамках одного эксперимента. Таким образом, реализовав данный алгоритм в цифровом реактиметре, можно находить значение реактивности с учетом поправки на влияние изменения эффективности детекторов в режиме реального времени.

Устройство работает следующим образом.

После начала отсчета времени t0 11 счета каналов детекторов 7 поступают в аналого-цифровой преобразователь 1, затем в блок частотно-импульсного измерителя периода реактора 14, после чего в блок деления 5, затем поступают в промежуточный вычислитель реактивности 12, где происходит вычисление реактивности по точечной модели кинетики с использованием заложенных констант в задатчике групповых параметров запаздывающих нейтронов 9. Одновременно с этим происходит суммирование значений амплитуд в сумматоре значений амплитуд для групп запаздывающих нейтронов 13 для групповых параметров запаздывающих нейтронов, заданных в задатчике групповых параметров запаздывающих нейтронов 9. Далее делитель счета детектора и сумм амплитуд 6 производит деление счета детектора и суммы амплитуд, полученных с сумматора значений амплитуд для групп запаздывающих нейтронов 13 . Затем логарифматор 10 производит вычисление , после чего в первом дифференциаторе 8 производится дифференцирование . Параллельно этому во втором дифференциаторе 2 производится дифференцирование полученной реактивности в промежуточном вычислителе реактивности 12. После этого значения, полученные в первом дифференциаторе 8 и во втором дифференциаторе 2, поступают в вычислитель поправочного слагаемого 3 для вычисления поправочного слагаемого. После чего в вычислителе реактивности 4 происходит вычисление реактивности с учетом влияния пространственных эффектов.

Пример конкретного исполнения устройства

В данном устройстве для измерения реактивности ядерного реактора используются последовательно соединенные между собой аналого-цифровой преобразователь (КПР-2), частотно-импульсный измеритель (БИ-1), блок деления, промежуточный вычислитель реактивности, реализованные в блоках стандарта КАМАК, с последовательно соединенными задатчиком групповых параметров запаздывающих нейтронов, сумматором значений амплитуд для групп запаздывающих нейтронов, делителем счета детектора и сумм амплитуд, логарифматором, первым дифференциатором, реализованные в блоках стандарта КАМАК, а также последовательно соединенными блоком начала отсчета, детектором нейтронов (КНК-56), и последовательно соединенными вторым дифференциатором, вычислителем поправочного слагаемого, вычислителем реактивности, реализованные в блоках стандарта КАМАК, причем блок начала отсчета соответственно соединен с промежуточным вычислителем реактивности и блоком делителя счета детектора и сумм амплитуд, задатчик групповых параметров запаздывающих нейтронов соединен с промежуточным вычислителем реактивности, первый дифференциатор соединен с вычислителем поправочного слагаемого, а промежуточный вычислитель реактивности соединен со вторым дифференциатором.

Устройство для измерения реактивности ядерного реактора, содержащее последовательно соединенные между собой аналого-цифровой преобразователь, частотно-импульсный измеритель, блок деления, промежуточный вычислитель реактивности, причем аналого-цифровой преобразователь соединен соответственно с блоком деления и промежуточным вычислителем реактивности, отличающееся тем, что устройство дополнительно снабжено последовательно соединенными задатчиком групповых параметров запаздывающих нейтронов, сумматором значений амплитуд для групп запаздывающих нейтронов, делителем счета детектора и сумм амплитуд, логарифматором, первым дифференциатором, а также последовательно соединенными блоком начала отсчета, детектором нейтронов и последовательно соединенными вторым дифференциатором, вычислителем поправочного слагаемого, вычислителем реактивности, причем блок начала отсчета соответственно соединен с промежуточным вычислителем реактивности и блоком делителя счета детектора и сумм амплитуд, задатчик групповых параметров запаздывающих нейтронов соединен с промежуточным вычислителем реактивности, первый дифференциатор соединен с вычислителем поправочного слагаемого, а промежуточный вычислитель реактивности соединен со вторым дифференциатором.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РЕАКТИВНОСТИ ЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Showing 11-20 of 24 items.
27.02.2015
№216.013.2d3f

Устройство для получения стронция-82

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10),...
Тип: Изобретение
Номер охранного документа: 0002543051
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.41ec

Твердоэлектролитный датчик концентрации кислорода в газовых средах

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002548374
Дата охранного документа: 20.04.2015
20.03.2019
№219.016.e53c

Термоэмиссионный преобразователь

Изобретение относится к области преобразования тепловой энергии в электрическую. Термоэмиссионный преобразователь содержит токоподводы (16), катод со средствами подвода тепла (7) и перфорированный анод (12) со средствами отвода тепла, разделенные межэлектродным зазором (8), систему подачи пара...
Тип: Изобретение
Номер охранного документа: 0002390872
Дата охранного документа: 27.05.2010
20.03.2019
№219.016.e653

Способ и газоанализатор для определения локальных объемных концентраций водорода, водяного пара и воздуха в парогазовой среде с использованием ультразвука

Использование: для определения локальных объемных концентраций водорода, водяного пара и воздуха в парогазовой среде с использованием ультразвука. Сущность: заключается в том, что осуществляют измерение парциального давления водорода, при этом в зоне контроля параметров парогазовой среды...
Тип: Изобретение
Номер охранного документа: 0002374636
Дата охранного документа: 27.11.2009
20.03.2019
№219.016.e6e8

Устройство для нанесения изотопа йода на серебряный поверхностный слой изделий

Изобретение относится к радиохимии и может быть использовано для производства закрытых источников излучения йода-125. Устройство для нанесения изотопа йода на серебряный поверхностный слой изделий состоит из потенциостата (5) и электролизера, состоящего из ванны (1), внутренняя поверхность...
Тип: Изобретение
Номер охранного документа: 0002364665
Дата охранного документа: 20.08.2009
20.03.2019
№219.016.e951

Способ получения препарата на основе радия-224

Изобретение относится к радиохимии и может быть использовано для получения применяемого в ядерной медицине препарата на основе радия-224. Способ получения препарата на основе радия-224 включает сорбцию тория-228 из водного кислого раствора тория-228 и радия-224 на сорбенте, селективно...
Тип: Изобретение
Номер охранного документа: 0002441687
Дата охранного документа: 10.02.2012
09.05.2019
№219.017.5015

Способ очистки изолированного газом высоковольтного устройства

Изобретение относится к области электротехники и касается способа очистки изолированного газом высоковольтного устройства. Способ включает воздействие электрическим полем на твердые частицы, изменение плотности изоляционного газа путем изменения давления, очистку изоляционного газа с помощью...
Тип: Изобретение
Номер охранного документа: 0002443031
Дата охранного документа: 20.02.2012
09.06.2019
№219.017.7942

Термоэмиссионный электрогенерирующий модуль активной зоны ядерного реактора с прямым преобразованием энергии

Изобретение относится к области преобразования тепловой энергии в электрическую и может быть использовано в качестве источника электропитания в составе космической ядерной энергетической установки. Термоэмиссионный электрогенерирующий модуль ядерного реактора с прямым преобразованием энергии...
Тип: Изобретение
Номер охранного документа: 0002347291
Дата охранного документа: 20.02.2009
09.06.2019
№219.017.7a4d

Фильтр-сорбер

Изобретение относится к сорбционным фильтрам для очистки технологических воздушных сред. Фильтр-сорбер состоит из цилиндрического корпуса, днища, крышки, нижней и верхней кассетных плит, входного и выходного патрубков. Фильтр-сорбер содержит, по меньшей мере, одну цилиндрическую обечайку,...
Тип: Изобретение
Номер охранного документа: 0002381054
Дата охранного документа: 10.02.2010
09.06.2019
№219.017.7a8a

Способ получения препарата на основе иттрия-90

Изобретение относится к способу получения иттрия-90 высокой степени чистоты, который включает разделение находящихся в азотнокислом растворе стронция-90 и иттрия-90 и дальнейшую очистку иттрия-90 от следов стронция-90 на экстракционно-хроматографических колонках с твердым экстрагентом на основе...
Тип: Изобретение
Номер охранного документа: 0002385754
Дата охранного документа: 10.04.2010
Showing 11-12 of 12 items.
27.02.2015
№216.013.2d3f

Устройство для получения стронция-82

Изобретение относится к устройству для получения стронция-82. Заявленное устройство содержит нагреватель (9) и изолирующую камеру (4), заполняемую газом, не взаимодействующим с металлическим рубидием, в которой установлены облученная в потоке ускоренных заряженных частиц мишень (10),...
Тип: Изобретение
Номер охранного документа: 0002543051
Дата охранного документа: 27.02.2015
20.04.2015
№216.013.41ec

Твердоэлектролитный датчик концентрации кислорода в газовых средах

Изобретение относится к измерительной технике. Твердоэлектролитный датчик концентрации кислорода в газовых средах содержит керамический чувствительный элемент (3), герметично размещенный в металлическом корпусе (4), электрод сравнения (8), потенциалосъемный вывод (5), измерительный электрод...
Тип: Изобретение
Номер охранного документа: 0002548374
Дата охранного документа: 20.04.2015
+ добавить свой РИД