×
10.02.2013
216.012.2454

Результат интеллектуальной деятельности: СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Заявленная группа изобретений относится к области экспериментальной аэродинамики и может быть использована при проведении испытаний в трансзвуковых аэродинамических трубах. Предложен новый способ адаптации рабочей части аэродинамической трубы, содержащий новую технологию получения на границах рабочего потока составляющих скорости, соответствующих безграничному обтеканию испытываемой модели. Технология основана на применении наклонных отверстий, клапанов и поверхностей в стенке, позволяющих отбирать из потока и нагнетать в поток воздух из камеры давления навстречу действующему местному перепаду статических давлений, как это требуется на отдельных участках линий тока при безграничном обтекании. Предложено устройство для реализации нового способа адаптации. Технический результат - разработка способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов. 2 н.п. ф-лы, 7 ил.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах.

При создании аэродинамических труб (АДТ) остро стоит проблема влияния границ потока на точность эксперимента.

Ранее она решалась простым отодвиганием границ, т.е. увеличением размеров (диаметров) рабочей части, что существенно удорожало аэродинамический эксперимент.

Первым реальным и технически правильным способом решения этой проблемы явилось применение гибких стенок рабочей части, повторяющих линии тока набегающего и обтекающего модель потока воздуха. Этот способ впервые применен для труб малых скоростей в 1944 году, и он применяется также в настоящее время (см. Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.51-95). Настройки приграничных течений с помощью гибких стенок сложны и практически непригодны при моделировании трехмерных пространственных течений.

Особенно остро проблема влияния границ потока встала при создании АДТ с околозвуковыми скоростями. Ее частичным решением стало применение перфорированных рабочих частей (см. Сборник работ по взаимодействию сверхзвуковых потоков с перфорированными границами. БНИ ЦАГИ, 1961). Полупроницаемые стенки с одной камерой давления (КД) и перфорацией в виде круглых отверстий и щелей позволяют решить некоторые, но не все проблемы индукции (влияния границ потока). Главная трудность здесь заключается в том, что направление действия перепада давлений на перфорированной границе не всегда совпадает с необходимым для безындукционного обтекания модели направлением течения через нее.

Для согласования направления действительного течения газа через стенку с тем направлением, которое соответствует безграничному обтеканию, было предложено секционирование камеры давления (КД), окружающей перфорированную рабочую часть [Самокорректирующиеся трансзвуковые трубы. Обзор №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.3-50].

Секционирование камеры давления было применено в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ и их сравнение между собой. В случае несовпадения этих распределений производят перенастройку параметров потока вдоль стенок рабочей части, для чего в различных секциях камеры давления создают различное давление, регулированием которого меняют направление движения газа через отверстия отдельных секций перфорации. Этот способ адаптации взят нами за прототип. Однако технические трудности по созданию таких рабочих частей даже для плоского (двухмерного) случая оказались очень большими. Для пространственных течений, которые представляют наибольший практический интерес, трудности по созданию и управлению секциями возрастают на порядок, что и является, по-видимому, причиной отсутствия действующих адаптируемых рабочих частей для исследования трехмерных объектов.

Рассмотрим причины, не позволяющие получить безындукционное обтекание модели в обычной перфорированной рабочей части с одной окружающей ее камерой давления. На фиг.1 приведено (из упомянутого Обзора №634, 1984, ЦАГИ. Составители: Г.Н.Мачехина, А.С.Фонарев, стр.7) распределение статического давления и вертикальной составляющей скорости вдоль плоскости, расположенной на расстоянии трех хорд у=3с от обтекаемого профиля. Профиль имеет чечевицеобразную форму, толщину 6% и располагается в невозмущенном потоке с числом Маха М=0,91 на участке х/с=-0,5 и х/с=0,5 (т.е. его центр находится в начале координат, длина хорды равна 1). Из фиг.1 видно, что распределение давления дважды проходит через линию, где меняется направление действия перепада давления (P1/P=1 и ΔP1/P=0), a вертикальная составляющая скорости V/U лишь в одной точке проходит через нуль и соответственно также меняет свой знак. Если теперь представить на рассматриваемой линии у=3c=const проницаемую границу рабочей части аэродинамической трубы, то требования к этой границе будут очень сильно отличаться на различных ее участках:

1. На участке АВ (фиг.1) со стороны рабочей части статическое давление на стенке больше, чем в невозмущенном потоке и, соответственно, в камере давления ΔР1>0. Вертикальная составляющая скорости направлена также в камеру давления V/U>0. Оба параметра имеют один знак и требуемая вертикальная составляющая скорости может быть получена на перфорированной стенке с обычными отверстиями. Величина этой составляющей определяется только коэффициентом проницаемости, который должен быть лишь правильно подобран.

2. На участке ВС (фиг.1) статическое давление на стенке со стороны рабочего потока уже меньше статического давления в камере давления, а вертикальная составляющая скорости по-прежнему должна быть направлена в камеру давления V/U. Параметры имеют разные знаки. На этом участке обычная перфорация не может обеспечить условий безындукционного обтекания в силу разного знака у скорости газа в отверстии и перепада статических давлений на нем.

3. На участке СД (фиг.1) перепад давлений на перфорированной стенке направлен, как и на предыдущем участке ВС, из камеры давления в рабочий поток ΔP1/P<0 и вертикальная составляющая скорости потока также направлена внутрь рабочей части (V/U<0). Оба параметра имеют один знак и все проблемы согласования расхода и перепада могут быть решены с помощью надлежащего выбора коэффициента проницаемости обычной перфорации.

4. На участке ДЕ (фиг.1) давление внутри рабочей части снова выше, чем в камере давления ΔP1/P>0, но при этом вертикальная составляющая скорости должна быть отрицательной V/U<0, т.е. газ должен втекать в рабочую часть. Параметры имеют разные знаки, и обычная перфорация не может обеспечить такого режима на границе потока.

Задача настоящего изобретения и технический результат заключаются в разработке способа и технических средств адаптации рабочей части аэродинамической трубы для получения безындукционного обтекания моделей летательных аппаратов.

Решение задачи и технический результат достигаются тем, что в способе адаптации рабочей части аэродинамической трубы, включающем обдув модели рабочим потоком, измерение параметров потока вблизи его границ, вычисление потребных для безграничного обтекания распределений параметров вблизи границ, их сравнение между собой и, в случае несовпадения этих распределений, перенастройку параметров потока вдоль стенок рабочей части, отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке с клапанами, которые отклоняют навстречу потоку и далее эжектируют эту часть в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Принудительный отбор воздуха из рабочей части и эжектирование воздуха в рабочую часть производятся за счет скоростного напора рабочего потока.

Решение задачи и технический результат достигается также тем, что в конструкции адаптируемой рабочей части аэродинамической трубы, включающей камеру давления и проницаемые стенки, последние снабжены отверстиями и щелями со специальными клапанами, отклоняемыми на углы α±45° для принудительного отбора воздуха из рабочей части и эжектирования воздуха в рабочую часть за счет скоростного напора рабочего потока.

На фиг.1 приведены распределения статического давления и значения вертикальной составляющей скорости на уровне стенки рабочей части при безграничном обтекании.

На фиг.2 приведена схема полной процедуры адаптации рабочей части с регулированием скоростей возмущенного моделью течения на контрольной поверхности по предлагаемому способу.

На фиг.3 приведена схема отверстия с клапаном, выступающим в поток и наклоненным против потока.

На фиг.4 приведена схема отверстия с клапаном, выступающим в поток и наклоненным по потоку.

На фиг.5 приведены экспериментальные зависимости вертикальной составляющей скорости вблизи стенки рабочей части от перепада давлений на ней для клапанов, приведенных на фиг.3 и 4.

На фиг.6 и 7 приведены еще два варианта клапанов со схемами течения воздуха в предлагаемом устройстве.

Предложенный способ адаптации границ потока в трансзвуковой аэродинамической трубе реализуется по процедуре, полностью приведенной на фиг.2. Процедура адаптации начинается с вывода АДТ на рабочий режим и установки испытываемой модели на необходимый угол атаки. В этом положении производят измерения структуры (параметров) потока в рабочей части вблизи границ. Затем производят расчет этих же параметров по основным уравнениям аэромеханики в предположении безграничного обтекания модели. Эти распределения сравнивают между собой и, если распределения не совпадают, то ищут поправки в геометрию граничной стенки. После внесения этих поправок снова производят измерения параметров потока и расчеты при безграничном обтекании. Процедуру продолжают до совпадения этих распределений с заданной точностью, для чего может потребоваться 5-7 итераций.

Отличие данного предложения от аналогов и прототипа заключается в радикальном изменении технологии настройки составляющих возмущенной скорости потока на границах рабочей части. Для перенастройки параметров вдоль стенок рабочей части отбирают часть рабочего потока в камеру давления с помощью отверстий в стенке рабочей части трубы с клапанами, которые отклоняют навстречу потоку и далее эжектируют ее (часть) в основной поток с помощью отверстий с клапанами, которые отклоняют в противоположную сторону. Для создания потоков газа через отверстия стенки рабочей части, имеющих направление, обратное действующему местному перепаду давления, в предлагаемом способе используется скоростной напор основного сносящего потока.

В предлагаемом способе адаптации перфорированной границы аэродинамической трубы используют только одну камеру давления, но реализуют получение любых распределений вертикальной составляющей скорости независимо от направления местного действующего на стенку перепада давлений, как и в многосекционной камере давления.

Для реализации предлагаемого способа адаптации проницаемой границы аэродинамической трубы предлагается новая конструкция стенок рабочей части. Она должна включать клапаны с наклонными поверхностями, например по схемам на фиг.3 и 4. Ниже в подтверждение наших предложений приводятся результаты экспериментальной проверки. На фиг.3 и 4 приведены схемы отверстий с клапанами, выступающими в поток и наклоненными против потока и по потоку, где 1 - отверстие, 2 - рабочая поверхность клапана. Отверстие с клапаном фиг.3 отбирает часть основного потока даже при значительных обратных перепадах давления, что и требуется на участке ВС (фиг.1). При обратном наклоне рабочей поверхности клапана, выступающего в поток (фиг.4), основное течение будет эжектировать газ из камеры давления даже при некотором обратном перепаде давления, что и требуется на участке ДЕ перфорированной границы (фиг.1).

На фиг.6 и 7 приведены еще две конструктивные схемы клапанов, регулирующих расход и направление движения газа, также пригодных для адаптации границ потока в трансзвуковой аэродинамической трубе. Клапаны 2 могут перемещаться перпендикулярно потоку и поворачиваться на углы α от 0 до ±45° (фиг.6а). Для отбора части рабочего потока в камеру давления поверхности в отверстиях стенки выдвигают навстречу потоку (фиг.6б и 7б). В случае необходимости эжектирования ее из камеры давления в основной поток отверстия и поверхности в стенке наклоняют и выдвигают в противоположную сторону (фиг.6в и 7в). Клапаны могут применяться как в отверстиях, так и в продольных щелях. На фиг.6 диаметр клапана 2 практически равен диаметру отверстия 1 и работает это устройство только выдвижением наклонных поверхностей в поток. На фиг.7 диаметр клапана значительно меньше диаметра отверстия и он работает не только при выдвижении (отклонении) рабочих поверхностей в поток, но и как обычная перфорация. Управляющие приводы клапанов на фиг.6 и 7 для простоты опущены.

На фиг.5 представлены экспериментальные расходные характеристики испытанных клапанов - зависимости нормальной к стенке составляющей скорости V/U от относительного перепада давления на стенках ΔР/ρu2 (для случая звуковой скорости сносящего потока Мрч=1). Кривые 1 и 2 получены при положении (ориентации) клапана навстречу потоку, кривые 3, 4 и 5 при повороте рабочей поверхности клапана на 180° и ее ориентации по потоку. Кривые 2 и 3 сняты при наклоне рабочей поверхности клапана относительно направления потока на 5° (выступание в поток на 2 мм), кривые 1 и 4 при отклонении стенки на 10°, кривая 5 - при отклонении соответственно на 15°. Здесь же линией 6 изображена типичная характеристика стенки с обычным отверстием (например, в виде поперечной щели с относительной площадью 5%).

Из фиг.5 следует, что характеристики предлагаемых клапанов качественно отличаются от характеристик обычных перфорированных стенок. Если последние имеют вид кривых, проходящих через начало координат и расположенных в 1-ом и 3-ем квадрантах (линия 6), то у предлагаемых клапанов значительная часть характеристики расположена либо во втором, либо в четвертом квадранте. Это говорит о том, что расход газа через клапан и перепад на нем имеют разные знаки. При ориентации клапана навстречу потоку (кривые 1 и 2) при нулевом перепаде на стенке (ΔP/ρu2=0) через стенку имеет место значительный положительный расход газа (V/U=0,015 для угла отклонения клапана 5° и V/U=0,03 для угла 10°). Нулевой расход газа через стенку (V/U=0) достигается в этом случае при значительном обратном перепаде давления (ΔР/ρu2=-0,15 и -0,22 соответственно).

При ориентации рабочей поверхности клапана в направлении по потоку при нулевом и даже положительном перепаде давления ΔP/ρu2≥0 газ втекает из камеры в поток со значительной отрицательной нормальной к стенке составляющей скорости. Так, при ΔP/ρu2=0 и угле наклона рабочей поверхности 5° вертикальная составляющая скорости равна - 0,005 (0,5%), при угле 10° - (-0,01) и при угле 15° - (0,018). Газ перестает эжектироваться из камеры давления в рабочую часть при положительных перепадах на стенке ΔP/ρu2=0,05; 0,08 и 0,13 соответственно при наклонах рабочей поверхности клапана 5°, 10° и 15°.

Данные фиг.5 показывают, что предлагаемые клапаны, площадь которых составляет менее 25% от полной площади изучаемого участка перфорации, легко позволяют получить требуемые вертикальные составляющие скорости V/U≈±1% при любых перепадах давления на стенке, в том числе ΔР/Р1≈±0,02 (фиг.4), как то необходимо из графика фиг.1. Для этого достаточно изменить угол наклона рабочей поверхности клапана к стенке трубы в диапазоне ±10°÷15°, а возможно, и значительно меньшем диапазоне (от+5° до -10°). Выступание клапана в поток при этом составляет 2÷4 мм и не превышает толщины пограничного слоя.

В целом эти эксперименты подтверждают реальность и работоспособность предлагаемых способа и устройства.

Физической основой предлагаемого процесса адаптации является использование энергии и скоростного напора основного течения в рабочей части аэродинамической трубы для управления его границами.


СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ АДАПТАЦИИ РАБОЧЕЙ ЧАСТИ АЭРОДИНАМИЧЕСКОЙ ТРУБЫ ДЛЯ ПОЛУЧЕНИЯ БЕЗЫНДУКЦИОННОГО ОБТЕКАНИЯ МОДЕЛЕЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 311-320 of 502 items.
10.05.2018
№218.016.47db

Антенный обтекатель и способ его изготовления

Изобретение относится к области ракетной техники, в частности к головным радиопрозрачным обтекателям пеленгационных сверхширокополосных антенн, работающих в диапазоне ультравысоких (УВЧ) и сверхвысоких (СВЧ) частот, и может быть использовано при проектировании и изготовлении радиопрозрачных...
Тип: Изобретение
Номер охранного документа: 0002650725
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4d36

Лонжерон лопасти аэродинамической модели воздушного винта и способ его изготовления

Изобретение относится к конструкциям и способам изготовления лопастей воздушных винтов. Лонжерон лопасти аэродинамической модели воздушного винта из композиционных полимерных материалов состоит из верхней и нижней профилированных полок, соединенных заполнителем. Заполнитель состоит из...
Тип: Изобретение
Номер охранного документа: 0002652545
Дата охранного документа: 26.04.2018
29.05.2018
№218.016.5275

Устройство для испытания панелей

Изобретение относится к области испытаний летательных аппаратов на прочность при сложном двухкомпонентном нагружении, в частности к испытаниям подкрепленных панелей силового каркаса планера самолета, работающих одновременно на сжатие и сдвиг, для определения фактической прочности и...
Тип: Изобретение
Номер охранного документа: 0002653774
Дата охранного документа: 14.05.2018
29.05.2018
№218.016.5366

Модель несущей поверхности летательного аппарата

Изобретение относятся к области экспериментальной аэродинамики, в частности исследований проблем аэроупругости летательных аппаратов. Модель содержит силовой сердечник, который выполнен в виде части профиля, включающей часть верхней и нижней поверхностей, например крыла или горизонтального...
Тип: Изобретение
Номер охранного документа: 0002653773
Дата охранного документа: 14.05.2018
29.05.2018
№218.016.55f7

Система рулевых приводов транспортного самолета

Изобретение относится к оборудованию летательных аппаратов и предназначено для построения системы управления полетом и реализации энергоснабжения рулевых агрегатов самолета в нормальных и аварийных условиях полета. Система рулевых приводов транспортного самолета состоит из основных...
Тип: Изобретение
Номер охранного документа: 0002654654
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.591b

Региональный самолет

Изобретение относится к авиационной технике. Самолет содержит фюзеляж овального поперечного сечения, низкорасположенное крыло, Н-образное хвостовое оперение, двухдвигательную силовую установку. Сечение фюзеляжа выполнено овальным, причем его высота составляет 0,7-0,75 от ширины, а длина 3,7-4,8...
Тип: Изобретение
Номер охранного документа: 0002655240
Дата охранного документа: 24.05.2018
09.06.2018
№218.016.5a1a

Законцовка крыла (варианты)

Группа изобретений относится к области летательных аппаратов. Законцовка крыла в виде крылышка большого удлинения, являющегося продолжением основного крыла и выполненного с размахом не менее 10% полуразмаха крыла, а размер концевой хорды не менее 30% ее корневой хорды. Выполнена она в виде...
Тип: Изобретение
Номер охранного документа: 0002655571
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5a22

Гидросамолёт

Изобретение относится к авиации и касается гидросамолетов с подрессоренными поплавками. Гидросамолет содержит фюзеляж, поплавки, соединенные с ним носовой и основной стойками, оснащенными упругодемпфирующими элементами и системой управления ими. Система управления содержит пульт управления,...
Тип: Изобретение
Номер охранного документа: 0002655572
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5aaa

Узел стыка отсеков фюзеляжа с сетчатой и традиционной конструктивно-силовыми схемами

Изобретение относится к области авиационных конструкций с различными конструктивно-силовыми схемами (КСС), в частности к сетчатой силовой конструкции отсека фюзеляжа гражданского самолета. Узел стыка отсеков фюзеляжа с сетчатой и традиционной КСС содержит спиральные ребра и торцевое кольцевое...
Тип: Изобретение
Номер охранного документа: 0002655585
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5b77

Устройство для измерения аэродинамических характеристик планирующего парашюта в аэродинамической трубе, модель планирующего парашюта для испытаний в аэродинамической трубе, способ измерения аэродинамических характеристик планирующего парашюта в аэродинамической трубе

Изобретение относится к авиационной технике и предназначено для измерения аэродинамических сил и моментов, действующих на купол планирующего парашюта (ПП) в потоке аэродинамической трубы (АДТ) при различных углах атаки и скольжения. Устройство используется следующим образом. После ввода в поток...
Тип: Изобретение
Номер охранного документа: 0002655713
Дата охранного документа: 29.05.2018
Showing 311-320 of 321 items.
20.01.2018
№218.016.1530

Направляющая насадка воздушного винта

Изобретение относится к движителям транспортных средств, преимущественно амфибийных судов на воздушной подушке и глиссеров. Направляющая насадка воздушного винта содержит предвинтовую и винтовую насадки, которые установлены коаксиально с образованием кольцевого канала. Предвинтовая насадка в...
Тип: Изобретение
Номер охранного документа: 0002634856
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1604

Способ сборки болтовых соединений силовых конструкций летательных аппаратов

Изобретение относится к авиастроению, в частности к способам сборки силовых агрегатов и элементов конструкции из алюминиевых сплавов с помощью болтов. Способ заключается в том, что болт в отверстие соединяемых деталей устанавливают по скользящей посадке, головку болта вместе с соединяемыми...
Тип: Изобретение
Номер охранного документа: 0002635304
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.2013

Установка для промывки топливного бака летательного аппарата газонасыщенной жидкостью (варианты)

Изобретение относится к техническому обслуживанию летательных аппаратов. Установка для промывки топливного бака включает в себя узел промывки, который размещается внутри топливного бака (2), магистраль (4) нагнетания газонасыщенной моющей жидкости в узел промывки и магистраль (5) слива из...
Тип: Изобретение
Номер охранного документа: 0002641408
Дата охранного документа: 17.01.2018
13.02.2018
№218.016.224e

Высотный активно-реактивный снаряд и способ его функционирования

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности...
Тип: Изобретение
Номер охранного документа: 0002642197
Дата охранного документа: 24.01.2018
04.04.2018
№218.016.305c

Люминесцентное полимерное покрытие для обнаружения повреждений конструкции

Изобретение относится к люминесцентным покрытиям для обнаружения повреждений конструкций и может быть использовано при неразрушающем контроле и диагностике состояния различных конструкций. Люминесцентное покрытие содержит первый по направлению от конструкции индикаторный слой с люминофором и...
Тип: Изобретение
Номер охранного документа: 0002644917
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3261

Способ калибровки видеограмметрических систем и контрольное приспособление для его осуществления

Изобретение относится к области оптических бесконтактных измерений геометрических параметров формы, положения, движения и деформации объектов в пространстве, в частности к ближней цифровой фотограмметрии и видеограмметрии, и может применяться для прецизионной калибровки видеограмметрических...
Тип: Изобретение
Номер охранного документа: 0002645432
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.328c

Крыло летательного аппарата

Изобретение относится к авиационной технике. Крыло летательного аппарата состоит из центроплана и консолей, выполненных с удлинением λ=7-11, сужением η=3-4.5 и стреловидностью χ=28-35°. Передняя и задняя кромки крыла при виде сверху прямолинейные. Задняя кромка выполнена с наплывом. Имеется...
Тип: Изобретение
Номер охранного документа: 0002645557
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.32d9

Способ обнаружения ударных повреждений конструкции

Изобретение относится к области неразрушающего контроля и касается способа обнаружения ударных повреждений конструкции. Способ включает в себя нанесение на поверхность конструкции люминесцентного покрытия люминесцирующего в видимой области спектра под воздействием УФ-излучения, просмотр...
Тип: Изобретение
Номер охранного документа: 0002645431
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.376b

Способ синхронизации и обеспечения симметрии тяги воздушных винтов силовой установки летательного аппарата и электрическая синхронизирующая трансмиссия для его реализации

Изобретение относится к силовым установкам летательных аппаратов. Способ синхронизации и обеспечения симметрии тяги воздушных винтов (1) силовой установки летательных аппаратов заключается в том, что в случае отказа одного из двигателей внутреннего сгорания (2) муфта свободного хода (4)...
Тип: Изобретение
Номер охранного документа: 0002646696
Дата охранного документа: 06.03.2018
11.03.2019
№219.016.d862

Рабочая часть трансзвуковой аэродинамической трубы (варианты)

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. В рабочей части трансзвуковой аэродинамической трубы, содержащей перфорированные стенки, камеру давления и узел подвески в потоке...
Тип: Изобретение
Номер охранного документа: 0002393449
Дата охранного документа: 27.06.2010
+ добавить свой РИД