×
10.02.2013
216.012.23e2

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТОЙ КОРКИ

Вид РИД

Изобретение

№ охранного документа
0002474688
Дата охранного документа
10.02.2013
Аннотация: Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал. Для определения акустических характеристик глинистой корки в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления. Из полученного сигнала определяют, по меньшей мере, одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида. 18 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к способам определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки.

Глинистая корка создается во время бурения буровым раствором, подаваемым в скважину по бурильной колонне и удаляемым через отверстия в буровом долоте с целью смазки бурового долота при бурении и для выноса обломков выбуренной породы на поверхность. Слой глинистой корки образуется по мере того, как буровой раствор смешивается с обломками горной породы и/или другими твердыми веществами и циркулирует вверх через кольцевую область между внешней поверхностью бурильной колонны и стенкой скважины. Смесь покрывает стенку скважины и образует слой глинистой корки. Одной из функций слоя глинистой корки является изолирование пласта от внутренней части скважины. Слой глинистой корки в отрасли часто называют глинистой коркой или фильтрационной коркой.

Известен способ прямого определения характеристик глинистой корки во время отбора проб, проводимого во время бурения, описанный в заявке WO 2009/139992. В известном способе используют низкочастотный акустический датчик в режиме прослушивания для оценки коэффициента диффузии давления глинистой корки κ, который непосредственно связан с герметизирующими характеристиками глинистой корки. В качестве устройства для создания гармонических или периодических колебаний давления использовался поршень камеры предварительных испытаний или любого другого устройства. Однако выработка колебаний давления не всегда возможна на практике.

Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал (например, единичный ступенчатый импульс давления).

Указанный технический результат достигается за счет того, что в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления, из полученного сигнала определяют по меньшей мере одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида.

Характеристиками переходного процесса являются показатель экспоненты переходной компоненты решения, момент времени, когда переходный компонент решения достигает своего максимума, и значение максимального давления, достигнутого во время переходного процесса.

В качестве неколеблющегося источника давления могут быть использованы как естественные источники, так и техногенные.

В качестве техногенных источников могут быть использованы низкочастотные акустические датчики/источники/трансдьюсеры, низкочастотная модуляция скважинного давления и т.п.

В качестве акустических датчиков для регистрации отклика давления могут быть использованы гидрофоны, трансдьюсеры, акселерометры, датчики давления и т.п.

Источник низкочастотных сигналов давления одновременно может быть акустическим датчиком.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на пакере.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на пробоотборнике.

Источник и/или датчик низкочастотных сигналов давления может быть установлен на опорном башмаке.

Может быть использовано несколько источников, установленных в разных местах.

Толщину глинистой корки определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов.

Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

Изобретение поясняется чертежом, где на фиг.1 показано отношение давления со стороны датчика, установленного в глинистой корке, к амплитуде давления с другой стороны для различных значений проницаемости.

Для получения параметров формации и глинистой корки распространение импульса давления через них можно разделить. Учитывая, что длина волны рассеивания давления в глинистой корке λmc значительно меньше длины волны в пласте λƒor и что толщина глинистой корки hmc значительно меньше радиуса скважины Rb, описание распространения сигнала давления через глинистую корку можно сократить до простой одномерной задачи.

где κ - пьезопроводность (коэффициент диффузии давления), P - давление, х - линейная координата, перпендикулярная поверхности глинистой корки, k - проницаемость, с пограничными условиями

Решение задачи (1)-(2) таково:

Это означает, что в случае источника, вырабатывающего неколеблющийся сигнал давления, отклик датчика будет содержать только переходный процесс. Например, рассмотрим ступенчатую функцию источника:

Путем простых преобразований решения (3), (4) получаем выражение:

для t≤τ0

и

для t>τ0

Можно увидеть, что данное решение содержит только переходный процесс. Этого результата можно было ожидать, т.к. отсутствуют источники стимулирования наведенных колебаний. Эта ситуация рассмотрена в качестве примера на фиг.1, на которой составлены графики P/P0(t) для моделей с различными значениями проницаемости. В этом случае в качестве источника был выбран ступенчатый начальный импульс давления продолжительностью 10 с. Можно увидеть, что переходный процесс, его максимум и дальнейшее затухание являются в достаточной степени выраженными, и их можно использовать для оценки проницаемости глинистой корки. Возможность этого создается за счет анализа как роста начального давления, так и за счет длительного понижения давления. Оба этих процесса можно проанализировать, используя формулы (5), (6).

В общем случае для любого неколебательного импульса давления отклик давления будет содержать только переходный процесс. Этот процесс отличается несколькими характерными чертами, которые можно использовать для оценки пьезопроводности глинистой корки κ:

1) экспонент переходного компонента решения;

2) момент времени τmax, когда переходный компонент решения достигает своего максимума;

3) значение максимального давления, достигнутого во время переходного процесса.

Выделение характеристик из отклика датчика (переходный процесс) не представляет трудностей. Нахождение τmax и максимального давления представляется простым. Для извлечения описанных выше величин из сигнала, регистрируемого датчиком, мы предлагаем использовать идеи теории обработки и фильтрации сигналов и синхронизированных по фазе контуров для разделения переходных и колебательных процессов. Это объясняется тем, что частота вынужденных колебаний известна (частота источника), а спектральное содержание переходного компонента решения сконцентрировано вокруг намного более низких частот. Следовательно, для извлечения переходного компонента решения можно применить фильтр низких частот. Тогда найти τmax можно очень легко. Если выбрать затухающую часть переходного компонента (при t>τmax) и взять ее логарифм, можно найти интервал времени, когда наклон кривой становится постоянным. Это указывает на то, что достигнута фаза, характеризуемая присутствием только одного оставшегося экспонента. Начальная стадия этого процесса регистрируется датчиком, и ее можно проанализировать, используя формулы решения (5), (6). Если знать эти значения и использовать формулы, устанавливающие их соотношения с κ, можно легко оценить его значение (например, путем простых итераций или использования обычного решателя для нахождения корней функций).

Использование акселерометров в качестве датчиков позволяет охватить широкую и, в особенности, высокочастотную область низкочастотного спектра (1 Гц - десятки кГц); автономные датчики давления позволяют проводить измерения сигнала давления и могут использоваться, даже если непосредственный контакт с глинистой коркой/ формацией по какой-либо причине нежелателен или невозможен, либо в таких местах, как вход зонда и т.д.

Можно использовать один или несколько источников, а также один или несколько датчиков. Следует также отметить, что зачастую одно и то же устройство может действовать и как источник, и как датчик, и эти состояния можно либо комбинировать, либо переключать. Кроме того, в части мест расположения этих источников и/или датчиков имеется определенная гибкость. В число примеров среди прочего входят:

- пакер для инструмента;

- башмак пробоотборника;

- опорный башмак;

- источник(и) /датчик(и), установленные автономно;

- и т.д.

Широкий спектр вариантов имеет большое значение и дает многочисленные преимущества. Например, если установить источник(и)/ датчик(и) на пакере, это может помочь для установления хорошего контакта с глинистой коркой; если установить их на башмаке пробоотборника, можно надежно измерить отклик вблизи входа зонда, что позволяет избежать сильного затухания сигнала давления и т.д.; если установить их на опорный башмак, можно компенсировать шум и точно измерить компонент сигнала, связанного с диффузией давления через глинистую корку; автономная установка обеспечивает гибкость при измерениях и проектировании и т.д.

Низкочастотные измерения можно существенно усовершенствовать за счет применения нескольких датчиков. Их можно разместить в различных местах: башмаке пробоотборника, опорном башмаке и т.д. Это может обеспечить снижение или устранение шума, а также возможность измерения пьезопроводности. Это может увеличить соотношение «сигнал-шум», снизить требования в части динамического диапазона и чувствительности, способствовать снижению возможных воздействий геометрии измерения и т.д.

Для оценки коэффициента диффузии давления глинистой корки κ предлагается использовать сигналы, регистрируемые низкочастотным акустическим датчиком.

Толщину глинистой корки hmc предварительно определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов (см., например, WO 2009/139992). Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

Подвижность флюида η в глинистой корке определяют как

η=κϕ/K

Пористость глинистой корки ϕ оценивается как 10-30%.


СПОСОБ ОПРЕДЕЛЕНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТОЙ КОРКИ
Источник поступления информации: Роспатент

Showing 61-70 of 112 items.
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b387

Способ разработки нефтеносного пласта

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке месторождений вторичным методом. Способ разработки нефтеносного пласта содержит бурение и чередование через один ряд, размещая на первом расстоянии друг от друга, рядов горизонтальных эксплуатационных...
Тип: Изобретение
Номер охранного документа: 0002613713
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.bf76

Устройство для моделирования щелевого протока жидкости

Изобретение относится к материалам и технологиям, применяемым при обработке подземных пластов, в частности к инструментальным методам и устройствам, подходящим для моделирования прохождения жидкостей для обработки скважины через трещину, образованную в подземном пласте. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002617178
Дата охранного документа: 21.04.2017
Showing 61-70 of 78 items.
10.04.2016
№216.015.320c

Способ определения изменений параметров пористой среды под действием загрязнителя

Использование: для неразрушающего анализа образцов пористых материалов. Сущность изобретения заключается в том, что производят начальное насыщение образца пористой среды электропроводящей жидкостью, или совместно электропроводящей жидкостью и неэлектропроводящим флюидом, или только...
Тип: Изобретение
Номер охранного документа: 0002580177
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3218

Способ размещения приемников сейсмических сигналов для системы наблюдений в сейсморазведке

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведки. Выбирают стандартную систему наблюдений, содержащую источники сейсмических сигналов, расположенные на поверхности возмущения, и приемники сейсмических сигналов, расположенные на поверхности...
Тип: Изобретение
Номер охранного документа: 0002580206
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3298

Способ акустического каротажа

Изобретение относится к средствам акустического каротажа в скважине. Техническим результатом является повышение качества получаемых в процессе каротажа акустических данных за счет компенсации вращения прибора акустического каротажа во время проведения измерений в скважине. Предложен способ...
Тип: Изобретение
Номер охранного документа: 0002581074
Дата охранного документа: 10.04.2016
13.01.2017
№217.015.68ec

Способ ориентирования трещин гидравлического разрыва в подземном пласте, вскрытом горизонтальными стволами

Изобретение относится к горному делу и может быть применено при гидравлическом разрыве пласта. Для обеспечения контролируемого инициирования и распространения трещин гидроразрыва осуществляют закачку первой жидкости гидроразрыва в первый горизонтальный ствол, сообщающийся с пластом по меньшей...
Тип: Изобретение
Номер охранного документа: 0002591999
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.80cb

Способ определения характеристик газонефтяной переходной зоны в необсаженной скважине

Изобретение относится к способам геофизических исследований скважин для нефтяных залежей с газовыми шапками с известным минералогическим составом слагающих пород. Для определения характеристик газонефтяной переходной зоны берут по меньшей мере по одной пробе из газовой части и из нефтяной части...
Тип: Изобретение
Номер охранного документа: 0002602249
Дата охранного документа: 10.11.2016
25.08.2017
№217.015.9cc0

Способ определения температурного коэффициента линейного расширения материала и устройство для его осуществления

Изобретение относится к области исследования механических и тепловых свойств материалов. Способ определения температурного коэффициента линейного расширения материала предусматривает перемещение относительно друг друга образца исследуемого материала и источника нагрева поверхности образца. В...
Тип: Изобретение
Номер охранного документа: 0002610550
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.9d2f

Способ определения расходов фаз двухфазной смеси в трубопроводе

Изобретение относится к измерениям параметров многофазных смесей при их транспортировке по трубопроводам. Для определения расходов фаз двухфазной смеси в трубопроводе формируют нестационарный импульсный режим течения многофазной смеси, обеспечивающий на выходе трубопровода пульсирующие выплески...
Тип: Изобретение
Номер охранного документа: 0002610548
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2ba

Измерительная ячейка дифференциального сканирующего калориметра

Изобретение относится к области термопорометрии, в частности к устройствам для проведения измерений распределения размера пор пористых сред, и может найти применение в различных отраслях промышленности, например нефтегазовой, химической и пищевой. Измерительная ячейка дифференциального...
Тип: Изобретение
Номер охранного документа: 0002607265
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a61d

Способ гидроразрыва подземного пласта

Изобретение относится к горному делу и может быть применено для гидроразрыва подземного пласта. Для создания в расклиненных трещинах стабилизированных каналов высокой проводимости в ствол скважины сначала закачивают первую гидроразрывную жидкость, не содержащую частиц проппанта, а затем вторую...
Тип: Изобретение
Номер охранного документа: 0002608380
Дата охранного документа: 18.01.2017
25.08.2017
№217.015.b384

Способ количественного анализа распределения твердых частиц загрязнителя, проникших в пористую среду при фильтрации

Изобретение относится к анализу образцов пористых материалов применительно к исследованию свойств околоскважинной зоны нефте/газосодержащих пластов. Смешивают окрашенные катионным красителем твердые частицы с гранулами сыпучей среды, близкой по цвету к исследуемой пористой среде, и...
Тип: Изобретение
Номер охранного документа: 0002613903
Дата охранного документа: 21.03.2017
+ добавить свой РИД