×
27.01.2013
216.012.20c3

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ

Вид РИД

Изобретение

№ охранного документа
0002473888
Дата охранного документа
27.01.2013
Аннотация: Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Сущность: в поверхностный слой контролируемого участка дороги встраивают резонатор с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими частотно-модулированными электромагнитными волнами. Диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги. Измеряют мощность отраженных от резонатора и принимаемых электромагнитных волн. По величине частоты, соответствующей минимуму принимаемой мощности, судят о состоянии поверхности дороги. Технический результат: повышение точности и упрощение процесса определения состояния дороги. 4 ил.
Основные результаты: Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют частотно-модулированными электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что в поверхностный слой контролируемого участка дороги встраивают резонатор с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измеряют мощность отраженных от резонатора и принимаемых электромагнитных волн и по величине частоты, соответствующей минимуму принимаемой мощности, судят о состоянии поверхности дороги, при этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.

Изобретение относится к измерительной технике и может быть применено для бесконтактного определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Известны различные способы определения состояния дорожных покрытий, основанные на различных принципах и связанные с измерением электрической емкости (US 5398547, 21.03.1995), электрической проводимости и сопротивления (US 4745803, 24.05.1988; US 4287472, 01.09.1981), с применением ультразвуковых волн (US 5095754, 17.03.1992), световых волн, в частности, инфракрасного излучения и др. (Winter В. Sensoren warnen vor Wasser oder Eis auf der Strasse // Sensor magazine. 1998. N.2. P.8). Однако они имеют определенные недостатки: некоторые из них являются контактными способами и характеризуются износом компонент применяемых измерительных устройств, связаны с применением линий связи между датчиками и электронными блоками; другие способы, являясь бесконтактными, чувствительны к погодным условиям и не могут определять толщину водного слоя.

Известны также микроволновые способы определения состояния дорожного покрытия (US 4690553, 01.09.1987; US 5686841, 11.11.1997; Hertl S., Schaffar G., Störi H. Contactless determination of the properties of water films on road // Journal of Physics E.: Scientific Instruments. 1988. Vol.21. N.10. P.955-958). Эти способы и реализующие их устройства позволяют производить бесконтактные измерения, определять и идентифицировать наличие воды, снега или льда на поверхности дорожного полотна и измерять их толщину. Однако известные способы имеют существенный недостаток: они не обеспечивают высокую точность измерения толщины слоя вещества (воды, снега или льда), который может быть очень тонким. Кроме того, эти способы достаточно сложны и имеют высокую стоимость реализации.

Известно также техническое решение (US 5497100, 05.03.1996), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в зондировании поверхности дороги частотно-модулированными электромагнитными волнами, приеме отраженных волн, получении множества значений амплитуд разностных сигналов, соответствующих принимаемым и излучаемым волнам, сравнении данного множества с множеством известных моделей поверхности и определении состояния дороги по результатам этого сравнения. Данный способ, как и вышеупомянутые способы, характеризуется невысокой точностью и сложен в реализации: процесс получения полезной информации связан со сложной функциональной обработкой принимаемых сигналов.

Поэтому существует необходимость нахождения технического решения, свободного от указанных недостатков и обеспечивающего возможность проведения измерений с повышенной точностью и более простыми средствами.

Техническим результатом настоящего изобретения является повышение точности и упрощение процесса определения состояния покрытия дороги.

Технический результат в предлагаемом способе определения состояния поверхности дороги достигается тем, что контролируемый участок поверхности дороги зондируют частотно-модулированными электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные волны, при этом в поверхностный слой зондируемого участка дороги встраивают резонатор с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измеряют мощность отраженных от резонатора и принимаемых электромагнитных волн и по величине частоты, соответствующей минимуму принимаемой мощности, судят о состоянии поверхности дороги, при этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.

Предлагаемый способ поясняется чертежами.

На фиг.1 приведена схема размещения устройства для реализации способа.

На фиг.2 изображена структурная схема устройства для реализации способа.

На фиг.3 изображен график зависимости мощности принимаемого сигнала от частоты.

На фиг.4 приведен коаксиальный резонатор.

На чертежах показаны коаксиальный резонатор 1, дорожное покрытие 2, слой воды, льда или снега 3, антенна 4, штанга 5, генератор 6, циркулятор 7, детектор 8, регистратор 9.

Сущность предлагаемого способа состоит в следующем.

Согласно данному способу, в дорожном полотне размещают чувствительный элемент в виде пассивного резонатора-отражателя электромагнитных волн, падающих на него. Относительное расположение антенны и резонатора такое, что волны, излучаемые антенной и отраженные данным резонатором, поступают на эту антенну. При этом нет необходимости иметь линии связи между погруженным чувствительным элементом и электронным блоком, расположенным вне дороги. В качестве такого пассивного резонатора-отражателя могут быть применены различные высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) резонаторы, встраиваемые в дорожное полотно в области контроля под приемо-передающей антенной. Электромагнитные волны, излучаемые этой антенной и отраженные от пассивного резонатора-отражателя, поступают на эту антенну. Возможно применение также и раздельных передающей и приемной антенн.

В качестве чувствительного элемента, подверженного влиянию осадков (дождя, снега) с образованием на его поверхности слоя воды, снега или льда, могут быть использованы различные типы резонаторов, способных запасать электромагнитную энергию за счет энергии облучающих их электромагнитных волн (частично-открытых объемных резонаторов, резонаторов с колебаниями типа ТЕМ и др.). Для этого они должны иметь отверстия в полостях и т.п. для обеспечения такой возможности. В частности, таким резонатором может являться четвертьволновый коаксиальный резонатор 1, разомкнутый на одном из торцов (фиг.1). Он размещен в дорожном покрытии 2 (асфальте и др.) и, возможно, покрыт слоем воды, льда или снега 3. На открытой поверхности полости коаксиального резонатора 1 может быть размещена тонкая пластина диэлектрика с малыми значениями диэлектрической проницаемости и тангенса угла диэлектрических потерь, например фторопласта (на чертежах она не показана), герметично закрывающая полость резонатора. Верхняя поверхность резонатора 1 расположена копланарно с поверхностью дороги в контролируемой области. Открытый торец резонатора 1 направлен в сторону антенны 5, расположенной над контролируемой областью дорожного полотна там, где в дорожном покрытии расположен данный резонатор 1. Эта приемо-передающая антенна 5 закреплена с помощью штанги 6. Излучение антенны направлено вертикально вниз, а открытый торец резонатора направлен вверх, принимая излучение антенны и отражая его обратно по направлению к антенне. В зависимости от наличия или отсутствия слоя воды, льда или снега на дорожном полотне и его параметров (толщины, диэлектрической проницаемости) изменяется собственная (резонансная) частота ƒr резонатора 1.

С помощью антенны 5 пассивный резонатор 1 зондируют частотно-модулированными электромагнитными волнами СВЧ-диапазона частот. При этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона значений резонансной частоты резонатора, соответствующих возможному состоянию поверхности дороги - наличию или отсутствию слоя воды, льда или снега в диапазоне возможных значений их толщины. Структурная схема измерительного устройства приведена на фиг.2. Здесь генератор 6 частотно-модулированных электромагнитных колебаний подсоединен через циркулятор 7 к антенне 5, зондирующей дорожное полотно 2, которое содержит пассивный резонатор 1 с покрывающим его, возможно, слоем 3 воды, снега или льда. Диапазон частот генератора 6 должен охватывать диапазон возможных изменений резонансной частоты пассивного резонатора 1, вызванных наличием слоя воды, льда или снега 3 на его открытой поверхности, направленной в сторону антенны 5. Электромагнитные волны, отраженные от данного резонатора 1 с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, поступают через циркулятор 7 на детектор 8; затем отраженный сигнал подается на регистратор 9. Когда изменяющаяся частота ƒ излучаемых электромагнитных волн совпадает с собственной (резонансной) частотой ƒr резонатора 1, мощность Р (амплитуда) принимаемого сигнала резко уменьшается вследствие возбуждения электромагнитных колебаний в резонаторе 1 (фиг.3). Определяя частоту, при которой имеет место минимум мощности Р (амплитуды) принимаемого сигнала и которая соответствует измеряемой резонансной частоте ƒr, можно определить параметры контролируемого поверхностного слоя воды, льда или снега 3. На фиг.3 кривая в виде сплошной линии соответствует исходной (без покрывающего слоя) зависимости P(ƒ) с резонансной частотой ƒr0; кривая в виде пунктирной линии соответствует текущей (с покрывающим слоем) зависимости P(ƒ) с резонансной частотой ƒr.

Для определения состояния поверхности дороги, обусловленного наличием на ее поверхности слоя осадков или его отсутствием, необходимо знать электрофизические параметры в СВЧ-диапазоне частот электромагнитных волн как самого дорожного полотна, в частности асфальтовых смесей, так и возможных веществ на его поверхности - воды, снега и льда. Так как в данном случае поверхность открытого торца резонатора размещена копланарно с поверхностью дороги, то осажденный слой воды, снега или льда присутствует непосредственно на этой поверхности. Поэтому в данном случае не следует принимать во внимание свойства асфальтового покрытия, а тонкая пластина диэлектрика на открытой поверхности полости резонатора слабо влияет на значение его собственной (резонансной) частоты (диэлектрическая проницаемость ε≈2,1 для фторопласта), то есть резонатор можно рассматривать как полый. Электрофизические параметры воды, снега и льда существенно отличаются друг от друга.

Электрофизические параметры воды, снега и льда.

Снег. Диэлектрическая проницаемость ε снега является функцией влагосодержания и плотности. Величина ε для сухого снега не зависит от частоты в диапазоне от примерно 1 МГц до, по крайней мере, 10 ГГц. Величина ε зависит от плотности снега, объема ледяной фракции и от формы частиц льда (Matzler С.Microwave permittivity of dry snow // IEEE Trans. on Geoscience and Remote Sensing. 1996. Vol.34. N.2. P.573-581). Так, если объем ледяной фракции изменяется от 0,05 до 0,5, то соответствующее изменение эффективной диэлектрической проницаемости сухого снега лежит в пределах от примерно 1,1 до 1,85. Значение мнимой части ε″ диэлектрической проницаемости ε для сухого снега меньше, чем 4×10-4 (для плотности снега менее чем 0,5 г/см3), для диапазона частот вблизи 1 ГГц (Kendra J.R., Ulaby F.T., Sarabandi K. Snow probe for in situ determination of wetness and density// IEEE Trans. on Geoscience and Remote Sensing. 1994. Vol.32. N.6. P.1152-1159). Диэлектрическая проницаемость ε имеет более высокие значения с увеличением влагосодержания W и плотности ρ снега. Так, если W=5,8%, то ε≈1,8 для ρ=0,41 г/см3, ε≈3,5 для ρ=0,58 г/см3 (Denoth A. The monopole-antenna: a practical snow and soil wetness sensor// IEEE Trans. on Geoscience and Remote Sensing. 1997. Vol.35. N.5. P.1371-1375).

Лед. Диэлектрическая проницаемость льда на частотах СВЧ-диапазона имеет величину ε=3,1-j·0,023 (Bianchi M., d'Ambrosio G., Massa R., Migliore M.D. Microwave devices for ice detection on aircraft // Journal of Microwave Power. 1996. Vol.31. N. 2. P. 83-86). Диэлектрические потери малы, лед может рассматриваться как диэлектрическое вещество с весьма малыми диэлектрическими потерями.

Вода. Диэлектрическая проницаемость, коэффициент диэлектрических потерь воды зависит от многих факторов (свободного или связанного состояния, солесодержания, температуры, присутствующих включений, длины волны и др.). Вода является полярным диэлектриком, центры ее молекул с противоположными зарядами находятся на некотором расстоянии друг от друга. Максимальное значение частотной зависимости ε″ около частоты ƒ≈10 ГГц обусловлено увеличением потерь в воде вблизи частоты естественных колебаний ее молекул. Частотная зависимость комплексной диэлектрической проницаемости ε выражается на линейном участке зависимости ε″(ƒ) следующим соотношением для сырой воды: ε=84(1-j·108/42ƒ); 105≤ƒ≤3·108 Гц; для морской воды: ε=80(1-j·109/ƒ); 106≤ƒ≤109 Гц (Финкельштейн М.И., Мендельсон В.Л., Кутев В.А. Радиолокация слоистых земных покровов. M.: Советсткое радио. 1977. 176 с.). Ряд более подробных данных о значениях ε для воды при разных условиях содержатся в (Nyfors E.G., Vainikainen P. Industrial microwave sensors. Artech House, Inc. 1989. 351 p.).

Поскольку электрофизические параметры воды, снега и льда существенно отличаются друг от друга и единицы (что соответствует отсутствию такого слоя на дороге), то значения частоты ƒr и диапазоны ее изменения существенно отличаются при наличии того или иного слоя на поверхности дороги или при его отсутствии. Это позволяет определить, какой вид слоя осадков (вода, снег или лед) присутствует на дороге (или отсутствует), а также, по величине изменения частоты ƒr, найти его толщину.

Возможные размеры (в миллиметрах) полого коаксиального резонатора 1 показаны на фиг.4. Резонансная частота такого резонатора составляет приблизительно 1,5 ГГц (наличие тонкой диэлектрической пластины на открытой поверхности его полости незначительно снижает эту частоту). Соответственно, частота генератора 6 должна охватывать возможные значения этой резонансной частоты.

Помимо вышерассмотренного коаксиального резонатора, возможно применение в качестве отражающих резонаторов и других различных конструкций пассивных резонаторов, включая планарные устройства.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью определять состояние поверхности дороги. Он дает возможность фиксировать наличие или отсутствие на поверхности дороги слоя воды, снега или льда и производить их идентификацию.

Способ определения состояния поверхности дороги, при котором контролируемый участок поверхности дороги зондируют частотно-модулированными электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные волны, отличающийся тем, что в поверхностный слой контролируемого участка дороги встраивают резонатор с изменяющейся в соответствии с состоянием дороги резонансной частотой электромагнитных колебаний, которые возбуждают в нем зондирующими электромагнитными волнами, измеряют мощность отраженных от резонатора и принимаемых электромагнитных волн и по величине частоты, соответствующей минимуму принимаемой мощности, судят о состоянии поверхности дороги, при этом диапазон изменения частоты зондирующих электромагнитных волн выбирают из условия его превышения диапазона возможных значений резонансной частоты резонатора, соответствующих определяемому состоянию поверхности дороги.
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
СПОСОБ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ПОВЕРХНОСТИ ДОРОГИ
Источник поступления информации: Роспатент

Showing 71-80 of 142 items.
23.02.2019
№219.016.c6ad

Способ управления движением судна по заданной траектории

Изобретение относится к области судовождения, в частности к автоматическому управлению движением судна. В способе используют сигналы текущего путевого угла и заданного значения путевого угла, которые совместно с сигналами угловой скорости судна и угла перекладки руля используют для формирования...
Тип: Изобретение
Номер охранного документа: 0002465169
Дата охранного документа: 27.10.2012
23.02.2019
№219.016.c6bb

Оптико-электронный расходомер потока газа или жидкости

Изобретение относится к области тепловой меточной расходометрии и может быть использовано для определения объемного или массового расхода газа или жидкости. Сущность: расходомер содержит измерительный трубопровод (1) с выравнивателем потока (2) на входе, управляемый генератор (3) тепловой метки...
Тип: Изобретение
Номер охранного документа: 0002460047
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf3e

Способ определения плотности диэлектрических жидких веществ

Предлагаемое изобретение относится к области измерительной техники. Способ определения плотности диэлектрических жидких веществ, протекающих по диэлектрическому трубопроводу, при котором зондируют вещество электромагнитными колебаниями и принимают распространяющиеся по трубопроводу колебания....
Тип: Изобретение
Номер охранного документа: 0002404421
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d4b8

Способ измерения сопротивления и устройство для его реализации

Изобретение относится к области измерительной техники. Последовательно осуществляют три такта измерения периода колебаний, зависящего от значения измеряемого сопротивления при различной конфигурации частотно-зависимой цепи. В первом такте формируют измеряемую величину , где R - первое эталонное...
Тип: Изобретение
Номер охранного документа: 0002395098
Дата охранного документа: 20.07.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
08.03.2019
№219.016.d54d

Измеритель частоты резонаторного датчика технологических параметров

Изобретение относится к измерительной технике. Измеритель частоты резонаторного датчика технологических параметров содержит первый сумматор, соединенный соответственно первым и вторым плечами с резонаторным датчиком и выходом перестраиваемого по частоте генератора электромагнитных колебаний, и...
Тип: Изобретение
Номер охранного документа: 0002456556
Дата охранного документа: 20.07.2012
08.03.2019
№219.016.d563

Способ обработки и анализа изображений кометоподобных объектов, полученных методом "днк-комет"

Способ заключается в том, что в компьютер с биологического препарата, установленного на флуоресцентный микроскоп с видеокамерой, вводят изображение с кометоподобными объектами - «кометами», представляющими собой набор слитых и отдельностоящих флуоресцирующих точек разной яркости. Затем...
Тип: Изобретение
Номер охранного документа: 0002404453
Дата охранного документа: 20.11.2010
08.03.2019
№219.016.d598

Датчик малых расходов жидкости

Изобретение относится к области расходометрии и может быть использовано для определения расхода слабых (порядка десятков - сотен миллилитров в секунду) потоков жидкости. Сущность: устройство содержит резистивный нагреватель, установленный на трубе с потоком жидкости, калориметрический...
Тип: Изобретение
Номер охранного документа: 0002469277
Дата охранного документа: 10.12.2012
08.03.2019
№219.016.d5b2

Устройство для получения электрической энергии при механических колебаниях

Изобретение относится к электротехнике, к устройствам для получения электрической энергии от двух расположенных рядом элементов при их механическом колебании относительно друг друга и может быть использовано, в частности, для получения энергии во время движения железнодорожных составов за счет...
Тип: Изобретение
Номер охранного документа: 0002468491
Дата охранного документа: 27.11.2012
Showing 71-80 of 99 items.
09.06.2018
№218.016.5c88

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность заявленного технического решения заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002656007
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5cac

Устройство для измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656021
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d0f

Способ измерения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве. Техническим результатом изобретения является расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002656016
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d10

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656023
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5d15

Способ определения длины протяженного металлического изделия

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины протяженных металлических изделий, в частности металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Сущность...
Тип: Изобретение
Номер охранного документа: 0002656012
Дата охранного документа: 30.05.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
09.08.2018
№218.016.7a52

Способ измерения давления

Изобретение относится к промышленной метрологии и может быть использовано для высокоточного измерения статического и динамического давления. Способ измерения давления, при котором в объемном резонаторе в виде отрезка волновода с одной из торцевых стенок в виде металлической мембраны,...
Тип: Изобретение
Номер охранного документа: 0002663552
Дата охранного документа: 07.08.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
+ добавить свой РИД