×
27.01.2013
216.012.2070

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ АКУСТИЧЕСКИХ ХАРАКТЕРИСТИК ГЛИНИСТОЙ КОРКИ

Вид РИД

Изобретение

№ охранного документа
0002473805
Дата охранного документа
27.01.2013
Аннотация: Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких, как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого, эффективного и точного способа определения характеристик глинистой корки в скважине, позволяющего извлечь из зарегистрированного сигнала информацию о геометрических и фильтрационных свойствах глинистой корки. Для определения акустических характеристик глинистой корки в скважине, по меньшей мере, одним акустическим датчиком регистрируют отклик давления на низкочастотные гармонические колебания давления. Из полученного сигнала определяют сдвиг фаз незатухающих колебаний давления, регистрируемых акустическим датчиком, относительно колебаний давления источника колебаний, и отношение амплитуды колебаний давления, зарегистрированных датчиком, к амплитуде исходного сигнала давления. Определяют толщину глинистой корки, и на основе полученных значений определяют пьезопроводность глинистой корки и подвижность флюида. 23 з.п. ф-лы.

Настоящее изобретение относится к способам определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких, как подвижность флюида и пьезопроводность глинистой корки.

Глинистая корка создается во время бурения буровым раствором, подаваемым в скважину по бурильной колонне и удаляемым через отверстия в буровом долоте с целью смазки бурового долота при бурении и для выноса обломков выбуренной породы на поверхность. Слой глинистой корки образуется по мере того, как буровой раствор смешивается с обломками горной породы и/или другими твердыми веществами и циркулирует вверх через кольцевую область между внешней поверхностью бурильной колонны и стенкой скважины. Смесь покрывает стенку скважины и образует слой глинистой корки. Одной из функций слоя глинистой корки является изолирование пласта от внутренней части скважины. Слой глинистой корки в отрасли часто называют глинистой коркой или фильтрационной коркой.

Известен способ прямого определения характеристик глинистой корки во время отбора проб, проводимого во время бурения, описанный в заявке WO 2009/139992. В данном патенте упомянута возможность использования низкочастотного акустического датчика, размещенного на пробоотборнике, в режиме прослушивания для оценки коэффициента диффузии давления (пьезопроводности) глинистой корки κ, который непосредственно связан с герметизирующими характеристиками глинистой корки. В качестве устройства для создания гармонических или периодических колебаний давления предлагается использовать поршень камеры предварительных испытаний или любого другого устройства.

Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании простого, эффективного и достаточно точного способа определения характеристик глинистой корки в скважине, позволяющего извлечь из зарегистрированного сигнала информацию о геометрических и фильтрационных свойствах глинистой корки.

Указанный технический результат достигается за счет того, что в скважине по меньшей мере одним акустическим приемником регистрируют отклик давления на низкочастотные гармонические колебания давления в скважине, из полученного сигнала определяют сдвиг фаз незатухающих колебаний давления, регистрируемых акустическим приемником относительно колебаний давления источника колебаний, и отношение амплитуды колебаний давления, зарегистрированных приемником, к амплитуде исходного сигнала, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида.

Источником низкочастотных гармонических колебаний давления могут являться естественные источники, такие как низкочастотный шум, возникающий при перемещении инструментов в скважине, низкочастотный шум при бурении, низкочастотная природная акустическая активность, шум от работы насоса, телеметрический сигнал бурового раствора и т.п.

Низкочастотные гармонические колебания давления могут быть возбуждены посредством по меньше мере одного техногенного источника. В качестве техногенных источников могут быть использованы низкочастотные акустические датчики/источники/трансдьюсеры, низкочастотная модуляция скважинного давления и т.п.

В качестве акустических датчиков для регистрации отклика давления могут быть использованы гидрофоны, трансдьюсеры, виброметры, акселерометры, датчики давления и т.п.

Источник низкочастотных гармонических колебаний одновременно может быть акустическим приемником.

Источник и/или датчик низкочастотных гармонических колебаний может быть установлен на пакере.

Источник и/или датчик низкочастотных гармонических колебаний может быть установлен на пробоотборнике.

Источник и/или датчик низкочастотных гармонических колебаний может быть установлен на опорном башмаке.

Может быть использовано несколько источников, установленных в разных местах.

Толщину глинистой корки определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов.

Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

В качестве источника можно использовать низкочастотные длинноволновые колебания давления в скважине. Они могут создаваться телеметрией импульсов бурового раствора или другими средствами.

Преимущества естественных источников заключаются в том, что они почти всегда присутствуют в околоскважинном пространстве, не требуют введения дополнительных компонентов в инструмент, не требуют источника питания и т.д. Например, «дорожный шум», т.е. шум, возникающий при движении инструментов в скважине, может иметь существенное значение при использовании каната, и обычно связан с взаимодействием между инструментом и стенкой скважины; шум при бурении относится к применению методов измерений во время бурения и вырабатывается при взаимодействии бурового долота и бурильной колонны с породой; природная акустическая активность (например, пассивная сейсмичность) может оказаться полезной в тех случаях, когда околоскважинное пространство является статичным (например, канатный инструмент или КНБК являются стационарными и не перемещаются во время измерений); и т.д. Особый интерес при проведении низкочастотных измерений представляют естественные источники в форме шума от работы насоса и телеметрии бурового раствора. Эти два источника почти всегда присутствуют в скважине (особенно, в процессе бурения); они обладают формой колебаний, которая хорошо известна (насосы и телеметрия раствора), и которой можно управлять (телеметрия раствора); существует возможность выработки весьма низкочастотных колебаний (до 1 Гц и даже ниже), а также колебаний, которые продолжаются достаточно длительное время; и т.д.

Преимущества техногенных источников заключаются в том, что они доступны при необходимости, не зависят существенно от внешних факторов, вырабатывают повторяющиеся и воспроизводимые сигналы, которыми можно управлять, и которые можно варьировать в соответствии с потребностями и т.д. Например, низкочастотный датчик может позволить получить управляемый сигнал; модуляция скважинного давления является логическим развитием естественного источника, представленного телеметрией бурового раствора, обладает ее преимуществами и дает дополнительные преимущества в виде гибкости управления и т.д.

Достоинства и недостатки различных датчиков, работающих на низкой частоте, во многом аналогичны преимуществам и недостаткам соответствующих источников. Например, виброметры обладают потенциалом, позволяющим очень точно описать поверхностные колебания; акселерометры могут помочь при охвате широкой и, в особенности, высокочастотной области низкочастотного спектра (1 Гц - десятки кГц); автономные датчики давления позволяют проводить измерения сигнала давления и могут использоваться, даже если непосредственный контакт с глинистой коркой/ формацией по какой-либо причине нежелателен или невозможен, либо в таких местах, как вход зонда и т.д.

Можно использовать один или несколько источников, а также один или несколько датчиков. Следует также отметить, что зачастую одно и то же устройство может действовать и как источник, и как датчик, и эти состояния можно либо комбинировать, либо переключать. Кроме того, в части мест расположения этих источников и/или датчиков имеется определенная гибкость. В число примеров среди прочего входят:

- пакер для инструмента;

- башмак пробоотборника;

- опорный башмак;

- источник(и) /приемник(и), установленные автономно;

- и т.д.

Широкий спектр вариантов имеет большое значение и дает многочисленные преимущества. Например, если установить источник(и)/ датчик(и) на пакере, это может помочь для установления хорошего контакта с глинистой коркой; если установить их на башмаке пробоотборника, можно надежно измерить отклик вблизи входа зонда, что позволяет избежать сильного затухания сигнала давления (например, если в качестве источника используется шум при пробоотборе), и т.д.; если установить их на опорный башмак, можно компенсировать шум и точно измерить компонент сигнала, связанного с диффузией давления через глинистую корку; автономная установка обеспечивает гибкость при измерениях и проектировании; и т.д.

Низкочастотные измерения можно существенно усовершенствовать за счет применения нескольких датчиков. Их можно размесить в различных местах: башмаке пробоотборника, опорном башмаке и т.д. Это может обеспечить снижение или устранение шума, а также возможность измерения дифференциального давления. Это может увеличить соотношение «сигнал-шум», снизить требования в части динамического диапазона и чувствительности, способствовать снижению возможных воздействий геометрии измерения и т.д.

Для оценки пьезопроводности κ предлагается использовать амплитуду и сдвиг фаз наведенных колебаний, регистрируемые низкочастотным акустическим датчиком.

При проведении измерений с колеблющимся сигналом отклик давления на датчике состоит из двух частей - переходного процесса, который стремится к нулю с возрастанием времени, и временных колебаний.

Пьезопроводность κ глинистой корки оказывает влияние на оба этих процесса, и для количественной оценки значения κ можно использовать сдвиг фаз φ незатухающих колебаний давления, регистрируемых датчиком относительно колебаний давления источника, и отношение RA амплитуды колебаний давления, зарегистрированных датчиком, к амплитуде исходного сигнала.

Эти характеристики отклика давления жестко связаны с κ. Их использование оправдано, когда незатухающие колебания давления на датчике достаточно сильны, чтобы их можно было извлечь из сигнала.

Для извлечения описанных выше количественных значений из сигнала, регистрируемого датчиком, предлагается использовать идеи о фильтрации сигнала и синхронизированные по фазе контуры для разделения переходных и колебательных процессов. Для определения фазы и амплитуды незатухающих колебаний можно умножить зарегистрированный сигнал на гармонические сигналы с известными фазами и частоту источника. После применения низкочастотного фильтра и решения простой системы линейных уравнений можно получить и сдвиг фаз, (с неопределенностью 2πn), и амплитуду незатухающих колебаний. Алгоритм можно реализовать как на программном (для отдельной обработки данных сигнала давления), так и на аппаратном (например, для обработки сигнала в скважине) уровне.

Ввиду того что реальные параметры затухания волн давления в

формации и глинистой корке для частот f свыше ~ 1 Гц будут слишком высоки, рекомендуется применять данный метод с использованием сигналов давления при частотах ниже ~ 1 Гц. Для таких частот характерный масштаб диффузии давления в формации намного превышает радиус скважины Rb. Характерный масштаб диффузии давления связан с пьезопроводностью и частотой сигнала как , где ω=2πf. Для частоты 1 Гц и реальных параметров λ* (характерная длина диффузионной волны) находится в диапазоне 101-102m для формации и ниже 10-2-100m для глинистой корки. Затухание амплитуды колебаний давления при их распространении через глинистую корку характеризуется отношением к толщине глинистой корки hmc (что равно показателю экспоненты данного затухания). Следовательно, рекомендуется поддерживать частоту на низком уровне, чтобы затухание давления было минимально возможным. Для реальных параметров формации и глинистой корки рекомендуется, чтобы датчик располагался близко к источнику (~10-2-10-1 m), а частота f сигнала была низкой (~10-3 - 1 Гц). Нижний предел частоты сигнала равен , где tm - продолжительность измерений.

Рассматривается уравнение пьезопроводности в постановке полупространства с плоской границей и тонким слоем на нем (глинистая корка). Существенная разница во временных и пространственных масштабах диффузии давления в этих двух средах (благодаря разнице в несколько порядков в их коэффициентах пьезопроводности) позволяет расщепить задачу на две подзадачи. Первая - диффузия давления в породе в цилиндрических координатах. Вторая - одномерная диффузия давления в глинистой корке в направлении, перпендикулярном к ее поверхности. Собирая решения этих задач вместе, можно получить простое аналитическое решение в виде ряда. Выделение и анализ его ведущего члена позволяет определить амплитуду и фазовый сдвиг отклика по отношению к исходному сигналу.

Пьезопроводность κ глинистой корки определяется как

κ=2πfl/(2k*2)

Так, например, для случая, когда источником колебаний является пробоотборник (см., например, WO 2009/139992), k* определяется из решения уравнений

φ=arg(cosh k*hmc(1+i))-1

где RA - отношение амплитуды колебаний давления, зарегистрированных датчиком, к амплитуде исходного сигнала, hmc - толщина глинистой корки, rp - радиус отверстия пробоотборника, ap - расстояние от датчика до центра отверстия пробоотборника, на котором измеряют отклик давления (ap>rp).

Толщину глинистой корки hmc предварительно определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов (см., например, WO 2009/139992). Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.

Подвижность флюида η в глинистой корке определяют как

η=κϕ/K

Пористость глинистой корки ϕ оценивается как 10-30%, K - объемный модуль упругости пористой среды.

Источник поступления информации: Роспатент

Showing 21-30 of 112 items.
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1f7

Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)

Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта. Керамический проппант включает множество спеченных...
Тип: Изобретение
Номер охранного документа: 0002507178
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a339

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507500
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33a

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507501
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a343

Способ измерения весовой концентрации глины в образце пористого материала

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507510
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e445

Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для...
Тип: Изобретение
Номер охранного документа: 0002524227
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7a4

Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик...
Тип: Изобретение
Номер охранного документа: 0002525093
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f882

Способ определения коэффициента теплового объемного расширения жидкости

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое...
Тип: Изобретение
Номер охранного документа: 0002529455
Дата охранного документа: 27.09.2014
Showing 21-30 of 78 items.
27.01.2014
№216.012.9c1e

Способ определения профиля притока и параметров околоскважинного пространства в многопластовой скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин и может быть использовано, в частности, при определении профиля притока скважины и параметров околоскважинного пространства. Согласно способу изменяют дебит скважины и осуществляют измерение во времени...
Тип: Изобретение
Номер охранного документа: 0002505672
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c21

Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на...
Тип: Изобретение
Номер охранного документа: 0002505675
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9fa4

Способ определения локального изменения концентрации примеси в потоке жидкости

Использование: для измерения локального изменения концентрации примеси в потоке жидкости на входе в измерительную ячейку. Сущность заключается в том, что сначала определяют изменение концентрации примеси во времени внутри измерительной ячейки для жидкости, содержащей примесь, изменение...
Тип: Изобретение
Номер охранного документа: 0002506576
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a1f7

Способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты)

Изобретение относится к керамическому проппанту и к способу его изготовления, а также к способу гидравлического разрыва пласта. Техническим результатом изобретения является снижение плотности и повышение стойкости к разрушению проппанта. Керамический проппант включает множество спеченных...
Тип: Изобретение
Номер охранного документа: 0002507178
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a339

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507500
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a33a

Способ измерения весовой концентрации глинистого материала в образце пористой среды

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507501
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a343

Способ измерения весовой концентрации глины в образце пористого материала

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств нефте/газосодержащих пластов ("повреждения пласта") из-за проникновения в процессе бурения глинистых материалов,...
Тип: Изобретение
Номер охранного документа: 0002507510
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a346

Способ определения количественного состава многокомпонентной среды

Изобретение относится к области исследования состава жидкостей и материалов с содержанием не менее двух компонентов, в частности к способам определения количественного состава многокомпонентных сред. В соответствии со способом определения количественного состава многокомпонентной среды,...
Тип: Изобретение
Номер охранного документа: 0002507513
Дата охранного документа: 20.02.2014
27.07.2014
№216.012.e445

Добавка к жидкости для обработки подземного пласта и способ обработки подземного пласта

Изобретение относится к обработке подземных пластов, конкретно к добавкам, улучшающим свойства используемых при этом композиций, и способам обработки с использованием этих добавок. Добавка к обрабатывающей жидкости для повышения проницаемости проппантной упаковки содержит агент для...
Тип: Изобретение
Номер охранного документа: 0002524227
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
+ добавить свой РИД