×
20.01.2013
216.012.1de2

Результат интеллектуальной деятельности: СПОСОБ РЕГЕНЕРАЦИИ ДЕГРАДИРОВАВШЕГО ОБОРОТНОГО ЭКСТРАГЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидрометаллургии и водным методам переработки облученного ядерного топлива атомных электростанций (ОЯТ АЭС) в части методов внутрицикловой регенерации оборотного экстрагента, состоящего из нейтральных и/или кислых фосфорсодержащих соединений и углеводородного разбавителя, от продуктов их деградации и остаточных целевых и/или нецелевых металлов. Способ заключается в использовании для регенерации экстрагента растворов бикарбонатов одновалентных сильных оснований, в частности бикарбоната натрия, тетраэтиламина или гуанидина, или же устойчивых к нагреванию растворов карбонатов одновалентных слабых оснований или смеси карбонатов и бикарбонатов одновалентных слабых оснований, таких как гидразин или метиламин. Изобретение позволяет увеличить число циклов работы экстрагента. 14 пр., 2 табл.
Основные результаты: Способ регенерации деградировавшего оборотного экстрагента, содержащего нейтральные фосфорорганические соединения и углеводородный разбавитель парафинового типа, а также остаточные концентрации нереэкстрагированных элементов, включающий промывку экстрагента регенерирующим щелочным раствором комплексообразователя, отличающийся тем, что в качестве регенерирующего раствора используют растворы бикарбонатов одновалентных сильных оснований, в частности бикарбонат натрия, тетраэтиламина или гуанидина, или же устойчивые к нагреванию растворы карбонатов одновалентных слабых оснований или смеси карбонатов и бикарбонатов одновалентных слабых оснований, таких как гидразин или метиламин.

Изобретение относится к области гидрометаллургии и водным методам переработки облученного ядерного топлива атомных электростанций (ОЯТ АЭС) в части методов внутрицикловой регенерации оборотного экстрагента, состоящего из нейтральных и/или кислых фосфорсодержащих соединений и углеводородного разбавителя, от продуктов их деградации и остаточных целевых и/или нецелевых компонентов.

Так, при экстракционной переработке ОЯТ АЭС, использующей в качестве экстрагента трибутилфосфат (ТБФ) в углеводородном разбавителе, при радиационно-химическом воздействии на экстрагент происходит образование продуктов гидролиза, радиолиза, нитрования и окисления обоих компонентов. За один цикл накапливается в среднем 100-200 мг/л дибутилфосфорной кислоты (ДБФК), ~50 мг/л высших карбоновых кислот и ~20 мг/л нитросоединений, а также превосходящие количества карбонильных соединений и некоторое количество эфиров азотной и азотистой кислот. При повторном использовании оборотного органического раствора без удаления продуктов деградации их накопление отрицательно повлияет на коэффициенты очистки и гидродинамику процесса. При этом в экстрагенте могут присутствовать нереэкстрагированные остаточные количества различных элементов - в первую очередь, урана, а также циркония, плутония, рутения и железа, что обусловлено как их комплексообразованием с продуктами деградации экстрагента, так и возможной неполнотой реэкстракции. Поэтому во всех технологических схемах действующих и проектируемых заводов по переработке ОЯТ АЭС органический раствор после реэкстракции целевых компонентов подвергается промывке, позволяющей удалить, в первую очередь, комплексующие органические примеси и удерживаемые ими загрязнения остатков различных металлов. Такая промывка в радиохимических производствах проводится в непрерывном режиме в смесителях отстойниках с большой поверхностью расслаивания фаз, тогда как в гидрометаллургических производствах такая очистка чаще всего проводится эпизодически в статическом режиме.

Традиционный и наиболее распространенный способ очистки экстрагента от продуктов радиолиза и их соединений с актинидами и продуктами деления, а также коррозии оборудования заключается в промывке его 0,2-0,5 моль/л водными растворами карбоната натрия, гидроокиси натрия или их смесью (Громов Б.В., Савельева В.И., Шевченко В.Б. "Химическая технология облученного ядерного топлива." М.: Энергоатомиздат, 1983, с.352). Данный способ принят нами как прототип.

Недостатком способа по прототипу является образование натриевых солей с длинноцепочечными органическими кислотами, являющимися продуктами облучения разбавителя, и полимерными продуктами деградации экстрагента, причем те и другие проявляют поверхностноактивные свойства при расслаивании фаз в щелочной среде, что приводит к образованию трудно разделяющейся водно-органической эмульсии и осадков.

Наряду с этим давно известно использование карбоната аммония для реэкстракции урана в гидрометаллургии урана (Гидрометаллургическая переработка уранорудного сырья. Смирнов Ю.В., Ефимова З.И., Скороваров Д.И., Иванов Г.Ф. - М.: Атомиздат, 1979. 280 с.). Его использование для регенерации оборотного экстрагента менее известно (Шевченко В.Б., Повицкий Н.С., Соловкин А.С. Некоторые особенности переработки облученных тепловыделяющих элементов первой атомной электростанции СССР. Труды Второй международной конференции по мирному использованию атомной энергии. Женева.1958. - Труды советский ученых, т.4. Химия радиоэлементов. М. Атомиздат.1959, с.28-33). Этот реагент не вызывает образования стойких эмульсий и при этом позволяет удалить дибутилфосфорную кислоту. Его недостатком является склонность к разложению с улетучиванием аммиака и углекислого газа из системы, особенно с повышением температуры, которое необходимо как на предыдущей операции для эффективной реэкстракции урана, так и на самой регенерации экстрагента для ускорения реакции разложения комплексов ДБФК и образования ею солей при минимально возможном удельном объеме регенерирующего раствора.

Известно также о возможности применения карбоната метиламина для реэкстракции урана из раствора сильного нейтрального комплексующего экстрагента (Патент РФ №2235375, бюл. №24, 2004).

Аналогичные проблемы возникают при использовании гидроксамовых или алкилфосфорных кислот в углеводородном разбавителе, тем более что их часто используют в виде раствора в предельных углеводородах с добавлением ТБФ как деэмульгатора.

Задачей заявляемого изобретения является выбор реагентов, не обладающих вышеуказанным недостатком, то есть позволяющих вымывать из экстрагента органические лиганды и примесные элементы, не создавая трудно разделяющихся эмульсии и осадков, образуемых, в первую очередь, натриевыми солями жирных кислот. При этом растворы таких реагентов должны быть термически устойчивы.

Для достижения поставленной задачи предлагается использовать слабощелочные растворы труднолетучих комплексообразователей, которые способны вымывать остаточные количества актинидных и других элементов без образования осадков в заданных пределах концентраций, а также короткоцепочечные органические кислоты, в том числе фосфорорганические, и другие продукты разложения экстрагента, но не способны образовывать соли с длинноцепочечными кислотами упомянутой природы или полимерными продуктами деградации экстрагента.

Таким условиям удовлетворяют растворы бикарбонатов одновалентных сильных оснований, в частности бикарбонат натрия, тетраэтиламина или гуанидина, или же устойчивые к нагреванию растворы смеси карбонатов и бикарбонатов одновалентных слабых оснований, таких как гидразин или метиламин. При этом гидрокарбонат аммония, а также метиламина уже недостаточно эффективно вымывают ДБФК, поэтому при очень высокой концентрации продуктов деградации парафинового разбавителя приходится подбирать смесь карбоната и гидрокарбоната соответствующего основания.

Эффективность заявляемого способа проиллюстрирована в таблицах 1 и 2 примерами по регенерации экстрагента 1,1 моль/л ТБФ в изопарафиновом разбавителе марки Изопар-Л. Все сказанное в полной мере относится к процессам регенерации любого экстрагента, используемого в радиохимическом производстве, где в качестве разбавителя применяются парафиновые разбавители с числом углеродных атомов больше 11.

Пример 1

Регенерация свежеприготовленного экстрагента, который содержал уран и азотную кислоту при отсутствии продуктов деградации экстрагента, проводится по прототипу (табл.1, строка 1). Регенерацию данного образца проводили при комнатной температуре в делительной воронке, используя в качестве регенерирующего раствора 0,5 моль/л Na2CO3 при отношении объемов фаз n=O/В=1 и при n=O/В=10. U и ДБФК переходят в водную фазу, причем система расслаивается нормально.

Пример 2

Регенерация проводится как в примере 1, но на регенерацию направлен образец модельного слабо пораженного экстрагента, содержащего уран, азотную кислоту и продукты деградации ТБФ и разбавителя, а именно ДБФК и 0,003 моль/л лауриновой кислоты (табл.1, строка 2). При n=O/В=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора без заметных осложнений. Однако при отношении объемов фаз n=O/В=1 (то есть при смене типа эмульсии) система трудно расслаивается, хотя U и ДБФК легко переходят в водную фазу.

Пример 3

Регенерация проводится в условиях как примере 1, но на регенерацию направлен образец модельного пораженного экстрагента, содержащего уран, азотную кислоту и продукты деградации ТБФ и разбавителя, а именно 0,008 моль/л лауриновой кислоты (табл.1, строка 3). Система n=O/В=1 плохо расслаивается, а при n=О/В=10 не расслаивается совсем за время эксперимента (6 ч).

Пример 4

Регенерацию проводили в условиях примера 3 с тем отличием, что в качестве регенерирующего реагента использовался раствор 1 моль/л NaHCO3 (табл.1, строка 4). При n=O/В=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора. При этом ДБФК и уран полностью переходят в водную фазу при отсутствии эмульгирования в системе. Однако концентрация 0,5 моль/л NaHCO3 при n=O/В=10 оказывается недостаточной (табл.1, строка 6).

Пример 5

Регенерацию проводили в условиях примера 4 с тем отличием, что концентрация лауриновой кислоты была повышена до 0,03 моль/л. При n=O/В=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора. При этом ДБФК и уран полностью переходят в водную фазу при отсутствии эмульгирования в системе (табл.1, строка 5).

Пример 6

Регенерацию проводили в условиях примеров 4 с использованием 0,5 моль/л (NH4)2СО3 в качестве регенерирующего реагента с аналогичными результатами, однако при прочих равных условиях полнота реэкстракции ДБФК и урана оказывается недостаточной (табл.1, строка 7).

Пример 7

Регенерацию проводили в условиях примера 4 и 5 с использованием 1 моль/л (NH4)2CO3 (табл.1, строка 8, 9), полнота реэкстракции ДБФК и урана становится достаточной, но при увеличении концентрации лауриновой кислоты до 0,03 моль/л на границе раздела фаз (ГРФ) образуются осадки и вступают в силу иные ограничения, а именно летучесть карбоната аммония.

Пример 8

Регенерацию проводили в условиях примера 4 и 5 с использованием 1 моль/л NH4HCO3 в качестве регенерирующего реагента, однако при прочих равных условиях полнота реэкстракции ДБФК и урана оказывается недостаточной, тогда как летучесть компонентов повышается (табл.1, строка 10).

Пример 9

Регенерацию проводили в условиях примера 4 с тем отличием, что в качестве регенерирующего реагента использовался раствор 0,5 моль/л ((NH2)2CNH2)2CO3 (карбонат гуанидина). При n=O/В=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора (табл.2, строка 1). При этом ДБФК и уран полностью переходят в водную фазу, но на ГРФ образуется небольшой осадок.

Пример 10

Регенерацию проводили в условиях примера 4 и 5 с тем отличием, что в качестве регенерирующего реагента использовался раствор 1 моль/л (NH2)2CNH3CO3 (гидрокарбонат гуанидина) (табл.2, строка 2). При n=O/B=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора. При этом ДБФК и уран полностью переходят в водную фазу в отсутствии эмульгирования в системе.

Пример 11

Регенерацию проводили в условиях примера 4 и 5 с тем отличием, что в качестве регенерирующего реагента использовался раствор 1 моль/л (С2Н5)4N·НСО3 (гидрокарбонат тетраэтиламина) (табл.2, строка 3). При n=O/В=10 проведены 3 последовательных промывки экстрагента свежими порциями регенерирующего раствора. При этом ДБФК и уран полностью переходят в водную фазу в отсутствии эмульгирования в системе.

Пример 12

Регенерацию проводили в условиях примера 4 с использованием 1 моль/л N2H6CO3 (гидразинкарбонат) в качестве регенерирующего реагента (табл.2, строка 4); процесс идет слабее, чем с карбонатом аммония, но эффективнее, чем гидрокарбонатом аммония, как в примере 7. Соотношение фаз в процессе лимитировано. Данный пример можно считать пограничным случаем.

Пример 13

Регенерацию проводили в условиях примеров 4 и 5 с использованием 0,5 моль/л (CH3NH3)2CO3 (табл.2, строка 5, 6), при этом ДБФК и уран полностью переходят в водную фазу, в отсутствие эмульгирования в системе, но при увеличении концентрации лауриновой кислоты до 0,03 моль/л образуется плохо расслаивающаяся белая эмульсия.

Пример 14

Регенерацию проводили в условиях примеров 4 и 5 с использованием смеси 0,35 моль/л (CH3NH3)2СО3 и 0,3 моль/л CH3NH3·HCO3 (табл.2, строка 7), при этом ДБФК и уран полностью переходят в водную фазу в отсутствие эмульгирования в системе.

Приведенные примеры показывают, что поставленная задача - избежать эмульгирования при регенерации экстрагента путем его карбонатной промывки, была достигнута путем подбора реагентов, представляющих собой слабощелочные растворы комплексообразователей, способных вымывать остаточные количества актинидных и других элементов без образования осадков в заданных пределах концентраций, а также короткоцепочечные органические кислоты, в том числе фосфорорганические, но не способные образовывать соли с длинноцепочечными кислотами упомянутой природы.

Способ регенерации деградировавшего оборотного экстрагента, содержащего нейтральные фосфорорганические соединения и углеводородный разбавитель парафинового типа, а также остаточные концентрации нереэкстрагированных элементов, включающий промывку экстрагента регенерирующим щелочным раствором комплексообразователя, отличающийся тем, что в качестве регенерирующего раствора используют растворы бикарбонатов одновалентных сильных оснований, в частности бикарбонат натрия, тетраэтиламина или гуанидина, или же устойчивые к нагреванию растворы карбонатов одновалентных слабых оснований или смеси карбонатов и бикарбонатов одновалентных слабых оснований, таких как гидразин или метиламин.
Источник поступления информации: Роспатент

Showing 1-10 of 38 items.
27.01.2013
№216.012.1eba

Способ изготовления стента для радиационной терапии злокачественных опухолей желчного протока

Изобретение относится к области ядерной медицинской техники и связано с разработкой способа изготовления полиэтиленовых и тефлоновых билиарных стентов, снабженных ралионуклидсодержащим сегментом и предназначенных для эндоскопической имплантации в желчный проток с целью осуществления...
Тип: Изобретение
Номер охранного документа: 0002473367
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.1f18

Способ получения апатита кальция

Изобретение относится к области синтеза материалов, используемых для изготовления технической и медицинской керамики, а также в качестве ионообменников. Способ включает растворение исходных компонентов: соединений кальция, метафосфата, хлорида в горячей воде. Затем полученную суспензию медленно...
Тип: Изобретение
Номер охранного документа: 0002473461
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.32e9

Способ получения летучих соединений платиновых металлов

Изобретение может быть использовано в химической промышленности. Летучие соединения состава М'(РF), где М' - Pt или Pd, получают при вакуумном прогреве галоидсодержащего соединения платинового металла в присутствии медного порошка. Полученные соединения обрабатывают трифторидом фосфора при...
Тип: Изобретение
Номер охранного документа: 0002478576
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.367a

Стекло для активной части источников ионизирующего излучения на основе цезия-137 и способ его изготовления

Изобретение относится к области изготовления источников ионизирующего излучения (ИИИ) на основе изотопов цезия и может быть использовано в технологии остекловывания радиоактивных отходов. В качестве материала активной части ИИИ на основе цезия-137 предлагаются цезийалюмофосфатные стекла,...
Тип: Изобретение
Номер охранного документа: 0002479499
Дата охранного документа: 20.04.2013
10.08.2013
№216.012.5d57

Способ получения покрытий из платиновых металлов

Изобретение относится к технологии получения покрытий из тугоплавких металлов методом химического осаждения из газовой фазы, а именно к методам получения защитных покрытий из иридия и родия, и может быть использовано в производстве полупроводниковых приборов и устройств, а также для получения...
Тип: Изобретение
Номер охранного документа: 0002489516
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.620f

Способ подготовки растворов переработки оят, содержащих комплексообразующие вещества, для экстракционного извлечения многовалентных актинидов

Изобретение относится к области переработки отработавшего ядерного топлива. Способ подготовки растворов переработки ОЯТ, содержащих комплексообразующие вещества, для экстракционного извлечения многовалентных актинидов при подавлении действия комплексообразователей, состоит из введения в раствор...
Тип: Изобретение
Номер охранного документа: 0002490735
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6909

Способ переработки отработавших фильтров на основе ткани петрянова

Изобретение относится к области переработки отходов радиохимической промышленности и, в частности, к способам утилизации фильтрующих материалов. Способ переработки отработавших фильтров на основе ткани Петрянова включает их контактирование с органической жидкостью, растворяющей материал...
Тип: Изобретение
Номер охранного документа: 0002492536
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6bfc

Способ электрохимического осаждения актинидов

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга...
Тип: Изобретение
Номер охранного документа: 0002493295
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.709c

Способ получения твердых растворов оксидов актинидов

Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO и PuO, получившего название МОХ (Mixed-Oxide) топлива. Азотнокислый раствор нитратов актинидов смешивается с раствором муравьиной кислоты,...
Тип: Изобретение
Номер охранного документа: 0002494479
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7ff5

Алюмосиликатный фильтр для высокотемпературной хемосорбции паров изотопов цезия

Изобретение относится к области переработки газообразных радиоактивных отходов, а именно к высокотемпературной хемосорбции алюмосиликатным фильтром паров радиоактивных изотопов цезия, образующихся при термической обработке цезийсодержащих радиоактивных материалов. Хемосорбцию паров цезия...
Тип: Изобретение
Номер охранного документа: 0002498430
Дата охранного документа: 10.11.2013
Showing 1-10 of 47 items.
27.01.2013
№216.012.1eba

Способ изготовления стента для радиационной терапии злокачественных опухолей желчного протока

Изобретение относится к области ядерной медицинской техники и связано с разработкой способа изготовления полиэтиленовых и тефлоновых билиарных стентов, снабженных ралионуклидсодержащим сегментом и предназначенных для эндоскопической имплантации в желчный проток с целью осуществления...
Тип: Изобретение
Номер охранного документа: 0002473367
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.1f18

Способ получения апатита кальция

Изобретение относится к области синтеза материалов, используемых для изготовления технической и медицинской керамики, а также в качестве ионообменников. Способ включает растворение исходных компонентов: соединений кальция, метафосфата, хлорида в горячей воде. Затем полученную суспензию медленно...
Тип: Изобретение
Номер охранного документа: 0002473461
Дата охранного документа: 27.01.2013
10.04.2013
№216.012.32e9

Способ получения летучих соединений платиновых металлов

Изобретение может быть использовано в химической промышленности. Летучие соединения состава М'(РF), где М' - Pt или Pd, получают при вакуумном прогреве галоидсодержащего соединения платинового металла в присутствии медного порошка. Полученные соединения обрабатывают трифторидом фосфора при...
Тип: Изобретение
Номер охранного документа: 0002478576
Дата охранного документа: 10.04.2013
20.04.2013
№216.012.367a

Стекло для активной части источников ионизирующего излучения на основе цезия-137 и способ его изготовления

Изобретение относится к области изготовления источников ионизирующего излучения (ИИИ) на основе изотопов цезия и может быть использовано в технологии остекловывания радиоактивных отходов. В качестве материала активной части ИИИ на основе цезия-137 предлагаются цезийалюмофосфатные стекла,...
Тип: Изобретение
Номер охранного документа: 0002479499
Дата охранного документа: 20.04.2013
10.08.2013
№216.012.5d57

Способ получения покрытий из платиновых металлов

Изобретение относится к технологии получения покрытий из тугоплавких металлов методом химического осаждения из газовой фазы, а именно к методам получения защитных покрытий из иридия и родия, и может быть использовано в производстве полупроводниковых приборов и устройств, а также для получения...
Тип: Изобретение
Номер охранного документа: 0002489516
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.620f

Способ подготовки растворов переработки оят, содержащих комплексообразующие вещества, для экстракционного извлечения многовалентных актинидов

Изобретение относится к области переработки отработавшего ядерного топлива. Способ подготовки растворов переработки ОЯТ, содержащих комплексообразующие вещества, для экстракционного извлечения многовалентных актинидов при подавлении действия комплексообразователей, состоит из введения в раствор...
Тип: Изобретение
Номер охранного документа: 0002490735
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.6909

Способ переработки отработавших фильтров на основе ткани петрянова

Изобретение относится к области переработки отходов радиохимической промышленности и, в частности, к способам утилизации фильтрующих материалов. Способ переработки отработавших фильтров на основе ткани Петрянова включает их контактирование с органической жидкостью, растворяющей материал...
Тип: Изобретение
Номер охранного документа: 0002492536
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6bfc

Способ электрохимического осаждения актинидов

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению плутония, америция и кюрия из органической среды, и может быть использовано для переработки облученного ядерного топлива, изготовления изотопных источников актинидов, а также для радиационного мониторинга...
Тип: Изобретение
Номер охранного документа: 0002493295
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.709c

Способ получения твердых растворов оксидов актинидов

Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO и PuO, получившего название МОХ (Mixed-Oxide) топлива. Азотнокислый раствор нитратов актинидов смешивается с раствором муравьиной кислоты,...
Тип: Изобретение
Номер охранного документа: 0002494479
Дата охранного документа: 27.09.2013
10.11.2013
№216.012.7ff5

Алюмосиликатный фильтр для высокотемпературной хемосорбции паров изотопов цезия

Изобретение относится к области переработки газообразных радиоактивных отходов, а именно к высокотемпературной хемосорбции алюмосиликатным фильтром паров радиоактивных изотопов цезия, образующихся при термической обработке цезийсодержащих радиоактивных материалов. Хемосорбцию паров цезия...
Тип: Изобретение
Номер охранного документа: 0002498430
Дата охранного документа: 10.11.2013
+ добавить свой РИД