×
20.01.2013
216.012.1c8a

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ГЕКСАМЕТИЛФОСФОРТРИАМИДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения гексаметилфосфортриамида, который может использоваться в химической промышленности. Предложен способ, предусматривающий обработку хлорокиси фосфора избытком диметиламина в среде толуола, добавление по каплям смеси хлорокиси фосфора и толуола, после выпадения в осадок соли хлористоводородного диметиламина повышение температуры реакции до комнатной и затем до 100°С, отфильтровывание соли на воронке Бюхнера, отгонку толуола от фильтрата под вакуумом, выделение гексаметилфосфортриамида перегонкой при давлении 1,0-1,5 мм рт.ст., и отличается тем, что обработку хлорокиси фосфора избытком диметиламина в среде толуола проводят в присутствии катализатора - безводного хлорида алюминия при температуре -5…+5°С. Способ позволяет увеличить выход чистого гексаметилфосфортриамида, снижает энергозатраты производства. 3 пр., 2 ил.
Основные результаты: Способ получения гексаметилфосфортриамида, предусматривающий обработку хлорокиси фосфора избытком диметиламина в среде толуола, добавление по каплям смеси хлорокиси фосфора и толуола, после выпадения в осадок соли хлористоводородного диметиламина повышение температуры реакции до комнатной и затем до 100°, отфильтровывание соли на воронке Бюхнера, отгонку толуола от фильтрата под вакуумом, выделение гексаметилфосфортриамида перегонкой при давлении 1,0-1,5 мм рт.ст., отличающийся тем, что обработку хлорокиси фосфора избытком диметиламина в среде толуола проводят в присутствии катализатора - безводного хлорида алюминия при температуре -5…+5°С.

Изобретение относится к области органической химии, в частности к методу синтеза органических фосфорсодержащих соединений. Гексаметилфосфортриамид может использоваться для растворения полимеров; как избирательный растворитель газов; как катализатор в процессах полимеризации и для стабилизации полистирола к термической деструкции, а также поливинила и полиолефина к действию ультрафиолетовых лучей; в качестве растворителя в органическом и неорганическом синтезе и для обработки растворов в синтезе ароматических полиамидных волокон.

Известен способ получения гексаметилфосфортриамида, который заключается в осуществлении реакции хлорокиси фосфора и диметиламина в среде гексаметилфосфортриамида, где он используется в качестве органического растворителя. В этом способе диметиламин смешивают с гексаметилфосфортриамидом, в смесь постепенно добавляют хлорокись фосфора. В результате около 95% оксихлорида фосфора превращается в гексаметилфосфортриамид. Реакцию проводят в основном при 0-40°C, предпочтительно при температуре около 20°C. Диметиламин, который имеет низкую температуру кипения при атмосферном давлении (7,4°C), возвращается в реакционную систему с помощью обратного холодильника или за счет проведения реакции при повышенном давлении. Влажный осадок диметиламина гидрохлорида после фильтрования или центрифугирования содержит большое количество гексаметилфосфортриамида. Его растворяют в воде, подщелачивают, а освободившийся диметиламин отгоняют. В водном растворе содержится 10-20% мас. гексаметилфосфортриамида, 10-20% мас. неорганической соли, небольшое количество диметиламина и органических побочных продуктов реакции. Из водного раствора гексаметилфосфортриамид может быть выделен экстракцией эфиром с последующим разделением перегонкой. Влажный осадок также можно промывать диметиламином. Метод синтеза представляет замкнутый либо полузамкнутый процесс (см. патент США №3991110, 09.11.1976).

Достоинствами этого метода являются осуществление синтеза при температурах, близких к комнатным, и высокий выход продукта. При этом существенным недостатком является то, что только 4% гексаметилфосфортриамида можно получить в чистом виде, остальная часть содержится в водном растворе, где присутствуют неорганические соли, диметиламин и органические побочные продукты реакции. Выделение абсолютного гексаметилфосфортриамида из такой смеси является сложным, многостадийным процессом и элиминирует преимущества использования гексаметилфосфортриамида в качестве растворителя.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения гексаметилфосфортриамида, заключающийся в обработке хлорокиси фосфора POCl3 в толуоле избытком диметиламина. Сухой диметиламин охлаждают до -60°C и постепенно вводят в толуол. Затем по каплям в течение трех часов добавляют смесь POCl3 и толуола при перемешивании. После выпадения в осадок соли диметиламина NH(CH3)2·HCl температуру повышают до комнатной и затем до 100°C. Соль отфильтровывают на воронке Бюхнера, а толуол отгоняют от фильтрата под вакуумом на водоструйном насосе. Оставшееся масло очищают нагреванием с NaOH, затем экстрагируют смесь хлороформом, отделяют слой хлороформа и перегоняют гексаметилфосфортриамид при 120°C (11 мм рт.ст.). Выход гексаметилфосфортриамида составляет 60% (см. М.Pianka, B.D.Owen, J.Appl. Chem., London, 5, 525 (1955)).

Недостатком способа является то, что для проведения основного процесса необходимо поддерживать температуру -60°C в течение трех часов, что требует дополнительных затрат энергии. Кроме того, выход продукта составляет только 60%.

Также, известны способы, где в качестве среды основной реакции используются диизопропиловый, дибутиловый эфир или хлороформ (см. Taitiro Fujinaga, Kosuke Izutsu, Hexamethylphosphoramide: purification and tests for purity // International union of pure and applied chemistry. - London. - 115-124).

Технический результат предлагаемого изобретения заключается в увеличении выхода чистого целевого продукта реакции до 84 - 87% и снижении энергозатратности производства.

Технический результат достигается тем, что в способе получения гексаметилфосфортриамида, предусматривающем обработку хлорокиси фосфора избытком диметиламина в среде толуола, добавление по каплям смеси хлорокиси фосфора и толуола, после выпадения в осадок соли хлористоводородного диметиламина повышение температуры реакции до комнатной и затем до 100°C, отфильтровывание соли на воронке Бюхнера, отгонку толуола от фильтрата под вакуумом, выделение гексаметилфосфортриамида перегонкой при давлении 1,0-1,5 мм рт.ст., согласно изобретению обработку хлорокиси фосфора избытком диметиламина в среде толуола проводят в присутствии катализатора - безводного хлорида алюминия при температуре -5…+5°C.

Предлагается способ получения гексаметилфосфортриамида формулы

с усовершенствованием технологии получения.

Гексаметилфосфортриамид представляет собой высокополярный апротонный органический растворитель, характеризующийся высокой сольватирующей способностью по отношению к неорганическим катионам и многим комплексам металлов.

Отличительными признаками предлагаемого способа получения гексаметилфосфортриамида являются: применение более высокой температуры в процессе основной реакции -5…+5°C, что снижает затраты энергии на охлаждение реакционной смеси; применение безводного хлорида алюминия в качестве катализатора, что повышает выход целевого продукта реакции до 84-87%.

Механизм действия катализатора - безводного хлорида алюминия, вероятно, аналогичен механизму каталитического алкилирования по Фриделю-Крафтсу. В качестве нуклеофила в данной реакции может выступать диметиламин. Хлорид алюминия (кислота Льюиса) способствует повышению электрофильности хлорокиси фосфора. Возможно, реакция протекает по следующему механизму:

Известно, что присутствие аминов в субстрате вызывает затруднение протекания реакции по Фриделю-Крафтсу, так как амины обладают относительно высокой основностью и координируются с кислотами Льюиса, что выводит катализатор из системы. В случае реакции хлорокиси фосфора с диметиламином, диметиламин вводится в систему последним, и его добавление происходит медленно и постепенно. Таким образом, высвобождающийся катализатор - безводный хлорид алюминия - взаимодействует с хлорокисью фосфора.

Экспериментальными исследованиями установлено, что проведение основной реакции при температурах -60…-6°C дает выход целевого продукта реакции только 60-75%, то есть требует больших затрат энергии и обеспечивает меньший выход гексаметилфосфортриамида, а реализация способа получения гексаметилфосфортриамида при температурах выше +5…+10°C осложнена летучестью диметиламина, что приводит к понижению выхода целевого продукта реакции.

Экспериментальные исследования показали, что повышение температуры основной реакции до -5…+5°C в присутствии катализатора - безводного хлорида алюминия - позволяет повысить выход чистого целевого продукта реакции до 84-87% и понизить энергозатратность производства.

Предлагаемый способ получения гексаметилфосфортриамида поясняется чертежами, где на фиг.1 изображена схема установки для проведения основной реакции синтеза гексаметилфосфортриамида, на фиг.2 - схема установки для вакуумной перегонки.

Установка для проведения основной реакции синтеза гексаметилфосфортриамид (см. фиг.1) включает трехгорлую колбу 1, которая помещена в теплообменнике или криостате 2. Приводная мешалка 3 установлена в горловине трехгорлой колбы 1. Капельная воронка 4 установлена в боковой горловине трехгорлой колбы 1. В другой горловине трехгорлой колбы 1 установлен обратный холодильник 5, который снабжен хлоркальциевой трубкой.

Схема установки для вакуумной перегонки (см. фиг.2) включает колбу 6 для вакуумной перегонки, в горловине которой установлен капилляр 7 для поступления воздуха. В боковой горловине колбы 6 для вакуумной перегонки установлен термометр 8. Сама колба 6 для вакуумной перегонки помещена в воздушную баню 9, под которой расположен нагревательный элемент 10. Разрежение в установке для вакуумной перегонки создается вакуумным насосом 11, контроль давления в системе осуществляется с помощью манометра 12. Через прямой холодильник 13 колба 6 для вакуумной перегонки соединена с алонж-пауком 14, имеющим приемные колбы 15.

Способ получения гексаметилфосфортриамида осуществляется следующим образом. В трехгорлую колбу 1 емкостью 1500 см3 (см. фиг.1) загружают 900 см абсолютного толуола, после чего трехгорлую колбу 1 охлаждают до температуры

-5…+5°С. Для поддержания заданной температуры используют теплообменник или криостат 2. Далее в трехгорлую колбу 1 доливают 250 см абсолютного диметиламина и добавляют катализатор - 0,2 г безводного хлорида алюминия (AlCl3). В полученную смесь в течение 4 часов при постоянном перемешивании с помощью приводной мешалки 3 по каплям через капельную воронку 4 добавляют 66 г хлорокиси фосфора POCl3, растворенной в 100 см3 толуола. По мере добавления образуется осадок хлористоводородного диметиламина. Температуру реакции доводят до комнатной и оставляют стоять в течение 6-7 часов. После этого температуру поднимают до 100°C, нагревание продолжают в течение 2 часов, при этом пары улавливаются обратным холодильником 5, снабженным хлоркальциевой трубкой, а конденсат возвращается в реакционную смесь в трехгорлой колбе 1.

Образующийся осадок соли диметиламина NH(CH3)2·HCl отделяют через воронку Бюхнера (не показано). Толуол отгоняют под вакуумом водоструйного насоса (не показано). Оставшийся гексаметилфосфортриамид отгоняют при вакууме 1,0-1,5 мм рт.ст. Схема установки для перегонки представлена на фигуре 2. Смесь помещают в колбу 6 для вакуумной перегонки, оснащенную капилляром 7 для поступления воздуха и термометром 8. Колбу 6 для вакуумной перегонки нагревают до температуры 69-77°C на воздушной бане 9 при помощи нагревательного элемента 10. Разрежение создают вакуумным насосом 11 и фиксируют манометром 12. Пары гексаметилфосфортиамида конденсируются в прямом холодильнике 13, а конденсат поступает от алонжа-паука 14 в приемные колбы 15.

Примеры, подтверждающие заявляемый способ получения гексаметилфосфортриамида

Пример 1. В трехгорлую колбу 1 емкостью 1500 см3 загружают 900 см3 абсолютного толуола. Затем колбу 1 охлаждают до температуры 0°C в теплообменнике 2, далее доливают 250 см3 абсолютного диметиламина и добавляют катализатор - 0,2 г безводного хлорида алюминия (AlCl3). В полученную смесь в течение 4 часов по каплям добавляют 66 г хлорокиси фосфора, растворенной в 100 см толуола. По мере добавления образуется осадок хлористоводородного диметиламина. Температуру реакции доводят до комнатной и оставляют стоять в течение 6 часов. После этого температуру поднимают до 100°C. Смесь нагревают 2 часа, затем осадок отделяют через воронку Бюхнера (не показано). Толуол отгоняют под вакуумом водоструйного насоса (не показано). Оставшийся гексаметилфосфортриамид перегоняют при вакууме 1,0 мм рт.ст.

Отогнанный продукт представляет собой бесцветную жидкость, т.кип. 232-234°C /760 мм рт.ст. или 70-76°C/ 1,0-1,5 мм рт.ст.; ηD20=1,4572; проба Бельштейна на хлорид отрицательна. Масса полученного гексаметилфосфортриамида 67 г. Выход продукта 87%.

Вычислено, %: C 40,21; H 10,12; N 23,45; P 17,28. C6H18N3OP

Найдено, %: C 40,45; H 10,17; N 23,28; P 17,00.

Положение пиков спектра поглощения, см-1: 1430-1470 C-N
1150-1350 P=O
700-730 P-N

Пример 2. В трехгорлую колбу 1 емкостью 1500 см3 загружают 900 см3 абсолютного толуола, охлаждают до температуры -5°С в теплообменнике 2, доливают 250 см3 абсолютного диметиламина и добавляют катализатор - 0,2 г безводного хлорида алюминия (AlCl3). В смесь в течение 4 часов по каплям добавляют 66 г хлорокиси фосфора, растворенной в 100 см3 толуола. По мере добавления образуется осадок хлористоводородного диметиламина. Температуру реакции доводят до комнатной и оставляют стоять в течение 6 часов. После этого температуру поднимают до 100°C. Нагревание продолжают 2 часа, затем осадок отделяют через воронку Бюхнера (не показано). Толуол отгоняют под вакуумом водоструйного насоса (не показано). Оставшийся гексаметилфосфортриамид перегоняют при вакууме 1,0 мм рт.ст.

Отогнанный продукт представляет собой бесцветную жидкость, т.кип. 232-234°C /760 мм рт.ст. или 70-76°C / 1,0-1,5 мм рт.ст.; ηD20=1,4572; проба Бельштейна на хлорид отрицательна. Масса полученного гексаметилфосфортриамида 65,5 г. Выход продукта 85%.

Вычислено, %: C 40,21; H 10,12; N 23,45; P 17,28. C6H18N3OP

Найдено, %: C 40,45; H 10,17; N 23,28; P 17,00.

Положение пиков спектра поглощения, см-1: 1430-1470 C-N
1150-1350 P=O
700-730 P-N

Пример 3. В трехгорлую колбу 1 емкостью 1500 см3 загружают 900 см3 абсолютного толуола, охлаждают до температуры +5°C в теплообменнике 2, доливают 250 см абсолютного диметиламина и добавляют катализатор - 0,2 г безводного хлорида алюминия (AlCl3). В смесь в течение 4 часов по каплям добавляют 66 г хлорокиси фосфора, растворенной в 100 см3 толуола. По мере добавления образуется осадок хлористоводородного диметиламина. Температуру реакции доводят до комнатной и оставляют стоять в течение 7 часов. После этого температуру поднимают до 100°C. Нагревают в течение 2 часов, затем осадок отделяют через воронку Бюхнера (не показано). Толуол отгоняют под вакуумом водоструйного насоса (не показано). Оставшийся гексаметилфосфортриамид перегоняют при вакууме 1,5 мм рт. столба.

Отогнанный продукт представляет собой бесцветную жидкость, т.кип. 232-234°C /760 мм рт.ст. или 70-76°C / 1,0-1,5 мм рт.ст.; ηD20=1,4572; проба Бельштейна на хлорид отрицательна. Масса полученного гексаметилфосфортриамида составила 64,7 г. Выход продукта 84%.

Вычислено, %: C 40,21; H 10,12; N 23,45; P 17,28. C6H18N3OP

Найдено, %: C 40,45; H 10,17; N 23,28; P 17,00.

Положение пиков спектра поглощения, см-1: 1430-1470 C-N
1150-1350 P=O
700-730 P-N

Как видно из примеров, заявляемое изобретение позволяет получить продукт реакции - гексаметилфосфортриамид, который представляет собой бесцветную жидкость, характеризующуюся температурой кипения 232-234°C при давлении 760 мм рт.ст. или 70-76°C при 1,0-1,5 мм рт.ст. и оптической плотностью при 20°C ηD20=1,4572, проба Бельштейна на хлорид отрицательна. Элементный состав полученного продукта соответствует элементному составу гексаметилфосфортриамида. Положение пиков спектра поглощения подтверждает наличие характерных атомных групп гексаметилфосфортриамда.

Заявляемое изобретение по сравнению с прототипом (см. М. Pianka, B.D.Owen, J.Appl. Chem., London, 5, 525 (1955)) позволяет:

- проводить основную реакцию при более высоких температурах, что обеспечивает снижение энергозатратности производства и упрощение аппаратного оформления;

- повысить выход целевого продукта реакции - гексаметилфосфортриамида до 84-87%.

Способ получения гексаметилфосфортриамида, предусматривающий обработку хлорокиси фосфора избытком диметиламина в среде толуола, добавление по каплям смеси хлорокиси фосфора и толуола, после выпадения в осадок соли хлористоводородного диметиламина повышение температуры реакции до комнатной и затем до 100°, отфильтровывание соли на воронке Бюхнера, отгонку толуола от фильтрата под вакуумом, выделение гексаметилфосфортриамида перегонкой при давлении 1,0-1,5 мм рт.ст., отличающийся тем, что обработку хлорокиси фосфора избытком диметиламина в среде толуола проводят в присутствии катализатора - безводного хлорида алюминия при температуре -5…+5°С.
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАМЕТИЛФОСФОРТРИАМИДА
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАМЕТИЛФОСФОРТРИАМИДА
Источник поступления информации: Роспатент

Showing 21-30 of 73 items.
10.01.2014
№216.012.9441

Способ получения строительного материала

Предлагаемое изобретение относится к области строительной индустрии. Техническим результатом изобретения является повышение физико-механических свойств изделий. Способ получения строительного материала включает смешивание щелочного компонента, воды и кремнеземсодержащего компонента в виде смеси...
Тип: Изобретение
Номер охранного документа: 0002503647
Дата охранного документа: 10.01.2014
20.03.2014
№216.012.ad08

Способ определения количества жидкости, перемещаемой поверхностно-активным веществом в газовой фазе

Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д. Для установления...
Тип: Изобретение
Номер охранного документа: 0002510011
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.aeec

Способ определения толщины граничного слоя воды

Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний. Для оценки толщины граничного...
Тип: Изобретение
Номер охранного документа: 0002510495
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bc55

Сепаратор для разделения сыпучих материалов

Изобретение относится к устройствам для разделения сыпучих материалов по упругости и может быть использовано в сельском хозяйстве при очистке семян зерновых культур от трудноотделимых примесей. Сепаратор для разделения сыпучих материалов содержит загрузочный бункер, на выходе из которого...
Тип: Изобретение
Номер охранного документа: 0002513941
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c6ad

Сепаратор для разделения сыпучих материалов

Изобретение относится к области разделения сыпучих материалов по самосортированию частиц и может быть использовано в сельском хозяйстве при сортировке по крупности, плотности и сферичности. Сепаратор для разделения сыпучих материалов включает бункер-дозатор (8), в котором установлены коническая...
Тип: Изобретение
Номер охранного документа: 0002516620
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c869

Способ подготовки зерна пшеницы с повышенной исходной влажностью к сортовому хлебопекарному помолу

Изобретение относится к мукомольно-крупяной промышленности и предназначено для подготовки зерна пшеницы с повышенной влажностью (14,5-16,5%) к сортовому помолу. Способ включает в себя очистку зерна от примесей, очистку поверхности зерна, тепловую обработку зерна конвективно-кондуктивным...
Тип: Изобретение
Номер охранного документа: 0002517071
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d35f

Дробилка молотковая безрешетная

Изобретение предназначено для измельчения кормов и может быть использовано в сельском хозяйстве для дробления зерновых материалов. Дробилка содержит загрузочный бункер 1, выгрузочную горловину 5, молотковый барабан 2, цилиндрический корпус 3, внутри которого установлены рифленые деки 4. В...
Тип: Изобретение
Номер охранного документа: 0002519882
Дата охранного документа: 20.06.2014
27.07.2014
№216.012.e512

Способ получения замороженного бактериального концентрата на основе симбиоза пробиотических бактерий

Изобретение относится к биотехнологии и может быть использовано для приготовления кисломолочных продуктов. Способ предусматривает приготовление питательной среды, ее стерилизацию и охлаждение. В охлажденную питательную среду вносят комбинированную закваску, содержащую отдельно...
Тип: Изобретение
Номер охранного документа: 0002524432
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e515

Способ получения бактериального концентрата и применение его в качестве биологически активной добавки к пище или закваски прямого внесения для курунги

Группа изобретений включает способы получения бактериального концентрата и их применение в качестве биологически активной добавки к пище или закваски прямого внесения. Изобретения относятся к биотехнологии и могут быть использованы для приготовления бактериальных концентратов. Способ...
Тип: Изобретение
Номер охранного документа: 0002524435
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e58e

Способ визуализации самоорганизации и движения объектов

Изобретение относится к области физической и коллоидной химии, нанотехнологиям микродвигателей, а также к другим областям для проведения анализа и характеристики материалов. Для визуального установления движения и определения траектории движения образовавшихся объектов в виде частиц в способе...
Тип: Изобретение
Номер охранного документа: 0002524556
Дата охранного документа: 27.07.2014
Showing 21-30 of 71 items.
10.01.2014
№216.012.9441

Способ получения строительного материала

Предлагаемое изобретение относится к области строительной индустрии. Техническим результатом изобретения является повышение физико-механических свойств изделий. Способ получения строительного материала включает смешивание щелочного компонента, воды и кремнеземсодержащего компонента в виде смеси...
Тип: Изобретение
Номер охранного документа: 0002503647
Дата охранного документа: 10.01.2014
20.03.2014
№216.012.ad08

Способ определения количества жидкости, перемещаемой поверхностно-активным веществом в газовой фазе

Изобретение относится к области оценки поверхностных свойств материалов и может быть использовано для разработки энергетических нанотехнологий в различных отраслях промышленности: химической, кожевенной и меховой, легкой, пищевой, медицинской, строительной индустрии и т.д. Для установления...
Тип: Изобретение
Номер охранного документа: 0002510011
Дата охранного документа: 20.03.2014
27.03.2014
№216.012.aeec

Способ определения толщины граничного слоя воды

Изобретение относится к области малых энергий в химии и может быть использовано при разработке нанотехнологий в разных отраслях промышленности: химической, легкой, кожевенной и меховой, пищевой, медицинской, строительной индустрии, а также в разных областях знаний. Для оценки толщины граничного...
Тип: Изобретение
Номер охранного документа: 0002510495
Дата охранного документа: 27.03.2014
20.04.2014
№216.012.bc55

Сепаратор для разделения сыпучих материалов

Изобретение относится к устройствам для разделения сыпучих материалов по упругости и может быть использовано в сельском хозяйстве при очистке семян зерновых культур от трудноотделимых примесей. Сепаратор для разделения сыпучих материалов содержит загрузочный бункер, на выходе из которого...
Тип: Изобретение
Номер охранного документа: 0002513941
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c6ad

Сепаратор для разделения сыпучих материалов

Изобретение относится к области разделения сыпучих материалов по самосортированию частиц и может быть использовано в сельском хозяйстве при сортировке по крупности, плотности и сферичности. Сепаратор для разделения сыпучих материалов включает бункер-дозатор (8), в котором установлены коническая...
Тип: Изобретение
Номер охранного документа: 0002516620
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c869

Способ подготовки зерна пшеницы с повышенной исходной влажностью к сортовому хлебопекарному помолу

Изобретение относится к мукомольно-крупяной промышленности и предназначено для подготовки зерна пшеницы с повышенной влажностью (14,5-16,5%) к сортовому помолу. Способ включает в себя очистку зерна от примесей, очистку поверхности зерна, тепловую обработку зерна конвективно-кондуктивным...
Тип: Изобретение
Номер охранного документа: 0002517071
Дата охранного документа: 27.05.2014
20.06.2014
№216.012.d35f

Дробилка молотковая безрешетная

Изобретение предназначено для измельчения кормов и может быть использовано в сельском хозяйстве для дробления зерновых материалов. Дробилка содержит загрузочный бункер 1, выгрузочную горловину 5, молотковый барабан 2, цилиндрический корпус 3, внутри которого установлены рифленые деки 4. В...
Тип: Изобретение
Номер охранного документа: 0002519882
Дата охранного документа: 20.06.2014
27.07.2014
№216.012.e512

Способ получения замороженного бактериального концентрата на основе симбиоза пробиотических бактерий

Изобретение относится к биотехнологии и может быть использовано для приготовления кисломолочных продуктов. Способ предусматривает приготовление питательной среды, ее стерилизацию и охлаждение. В охлажденную питательную среду вносят комбинированную закваску, содержащую отдельно...
Тип: Изобретение
Номер охранного документа: 0002524432
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e515

Способ получения бактериального концентрата и применение его в качестве биологически активной добавки к пище или закваски прямого внесения для курунги

Группа изобретений включает способы получения бактериального концентрата и их применение в качестве биологически активной добавки к пище или закваски прямого внесения. Изобретения относятся к биотехнологии и могут быть использованы для приготовления бактериальных концентратов. Способ...
Тип: Изобретение
Номер охранного документа: 0002524435
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e58e

Способ визуализации самоорганизации и движения объектов

Изобретение относится к области физической и коллоидной химии, нанотехнологиям микродвигателей, а также к другим областям для проведения анализа и характеристики материалов. Для визуального установления движения и определения траектории движения образовавшихся объектов в виде частиц в способе...
Тип: Изобретение
Номер охранного документа: 0002524556
Дата охранного документа: 27.07.2014
+ добавить свой РИД