×
10.01.2013
216.012.1a5d

Результат интеллектуальной деятельности: НЕВЕНТИЛИРУЕМЫЙ ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к ядерной технике, а более конкретно к невентилируемым газозаполненным тепловыделяющим элементам (твэлам) на основе диоксида урана, и может быть использовано в составе высокотемпературного газоохлаждаемого быстрого реактора ядерной энергетической установки (ЯЭУ) космического назначения. Твэл включает оболочку из жаропрочного монокристаллического материала, сердечник из диоксида урана в виде набора по высоте кольцевых таблеток, инертный газовый заполнитель, компенсационный объем и фиксирующий элемент. Сердечник со стороны выхода теплоносителя из реактора на длине, составляющей не менее 0,6-0,8 от длины активной зоны, выполнен из таблеток с преимущественно открытой пористостью и размером пор не менее 10 мкм. Фиксирующий элемент и компенсационный объем размещены со стороны входа теплоносителя в реактор и выполнены сообщающимися между собой и с центральным каналом, который образован кольцевыми таблетками и снабжен заглушкой со стороны выхода теплоносителя. При этом отношение объема открытой пористости сердечника к суммарному свободному объему в твэле составляет 0,2-0,7. Технический результат - пространственная стабильность оболочки высокотемпературного твэла в течение длительного ресурса в условиях воздействия знакопеременных нагрузок при одновременном ограничении поступления ГПД и компонентов топлива в газовый теплоноситель реактора. 5 з.п. ф-лы, 2 ил.

Изобретение относится к ядерной технике, а более конкретно к невентилируемым газозаполненным тепловыделяющим элементам (твэлам) на основе диоксида урана, и может быть использовано в составе высокотемпературного газоохлаждаемого быстрого реактора ядерной энергетической установки (ЯЭУ) космического назначения.

В патентной и научно-технической литературе достаточно широко представлены и обобщены конструкции невентилируемых твэлов применительно к водо- и газоохлаждаемым реакторам промышленного назначения, которые эксплуатируются при относительно низких рабочих температурах (температура оболочки находится на уровне 300-500°С). Поэтому они не могут быть использованы в составе высокотемпературных реакторов космических ЯЭУ без существенных изменений конструкции и выбора приемлемых топливных и конструкционных материалов.

В частности, представлены конструктивные варианты твэла на основе металлического урана с рабочей температурой до 500°С, твэлы газоохлаждаемого реактора на основе диоксида урана со стальной оболочкой, твэлы дисперсионного типа с матрицей из алюминия и его сплавов, для которых рабочая температура оболочки находится в диапазоне 100-230°С, а также твэлы дисперсионного типа с матрицей из нержавеющей стали [см., например, А.С.Займовский, В.В.Калашников, И.С.Головнин. Тепловыделяющие элементы атомных реакторов, М.: Атомиздат, 1966, с.334-336, с.368, с.382, с.389].

Твэлы высокотемпературных газоохлаждаемых реакторов (HTGR) промышленного назначения допускают рабочую температуру на топливе из UC2 или UO2 до 1500°С. Однако они предназначены для тепловых реакторов и имеют низкую загрузку по делящемуся материалу, так как топливо в виде частиц находится в графитовом замедлителе, а частицы для обеспечения совместимости имеют дополнительное покрытие из SiC. [Б.Фрост. Твэлы ядерных реакторов, М.: Энергоатомиздат, 1986, с.182-183].

Известен невентилируемый газозаполненный твэл, включающий оболочку из циркониевого сплава Н-1, сердечник в виде набора по высоте сплошных или кольцевых таблеток из диоксида урана с закрытой пористостью (плотность ≥95% от теоретической) при крупности пор 2-3 мкм, инертный газовый заполнитель, компенсационный объем и фиксирующий элемент, размещенный со стороны выхода теплоносителя. [Ф.Г.Решетников, Ю.К.Бибилашвили, И.С.Головнин. Разработка, производство и эксплуатация тепловыделяющих элементов энергетических реакторов. Книга 1, М.: Энергоатомиздат, 1995, с.40-46, с.91].

Этот твэл по конструктивным признакам является наиболее близким к предлагаемому, однако он не обладает длительным ресурсом в условиях высокотемпературной эксплуатации по следующим причинам:

- при характерных высоких рабочих температурах твэла космической ЯЭУ (максимальные температуры оболочки и сердечника находятся на уровне 1500°С и 1800°С соответственно) плотный диоксид урана имеет высокую скорость газового распухания (10-20%/% т.а.), что приводит к недопустимой величине радиальной деформации оболочки при рассматриваемых длительных (5-10 лет) ресурсах. [А.С.Гонтарь, М.В.Нелидов и др. Проблемы разработки термоэмиссионных твэлов. Тезисы докл. Отраслевой юбилейной конференции "Ядерная энергетика в космосе". Обнинск, 1990, с.193-195];

- не решена задача обеспечения геометрической стабильности оболочки в начальный период эксплуатации твэла при воздействии одностороннего высокого давления (2-4 МПа) газового теплоносителя;

- отсутствует обоснование возможности отвода газообразных продуктов деления (ГПД) из полости сердечника в компенсационный объем в условиях массопереноса диоксида урана при высоких рабочих температурах твэла;

- используемый поликристаллический материал оболочки не обеспечивает требуемых жестких ограничений на поступление компонент топлива и продуктов деления в газовый теплоноситель при высоких температурах вследствие зернограничной диффузии.

Перед авторами стояла задача обеспечения пространственной стабильности оболочки высокотемпературного твэла в течение длительного ресурса в условиях воздействия знакопеременных нагрузок со стороны газового теплоносителя, распухающего сердечника на основе диоксида урана и нарастающего давления ГПД в полости твэла при одновременном ограничении поступления продуктов деления и компонентов топлива в газовый теплоноситель реактора.

Для решения поставленной задачи авторами предложена конструкция невентилируемого тепловыделяющего элемента, включающего оболочку, сердечник из диоксида урана в виде набора по высоте кольцевых таблеток, инертный газовый заполнитель, компенсационный объем и фиксирующий элемент, в котором оболочка выполнена из жаропрочного монокристаллического материала, сердечник со стороны выхода теплоносителя из реактора на длине, составляющей не менее 0,6-0,8 от длины активной зоны, выполнен из таблеток с преимущественно открытой пористостью и размером пор не менее 10 мкм, а фиксирующий элемент и компенсационный объем размещены со стороны входа теплоносителя в реактор и выполнены сообщающимися между собой и с центральным каналом, образованным кольцевыми таблетками и снабженным заглушкой со стороны выхода теплоносителя, при этом отношение объема открытой пористости сердечника к суммарному свободному объему в твэле, который включает общую пористость сердечника и объем центрального канала, составляет 0,2-0,7.

В качестве материала оболочки может быть выбран либо монокристаллический сплав W+(3÷5)% мас. Та, либо монокристаллический сплав W+(l-3)% мас. Nb, либо монокристаллический сплав Мо+(3-4)% мас. Nb.

Оболочка из монокристаллического сплава выполнена на всю длину активной зоны протяженностью 300-500 мм.

В качестве газового заполнителя может использоваться Не либо смесь Не+Хе.

Сущность изобретения поясняется чертежами.

На фиг.1 представлена конструктивная схема предложенного тепловыделяющего элемента.

На фиг.2 - скорость миграции вакуумных и газозаполненных пор в сердечнике в зависимости от их размера.

На фиг.1 показаны: 1 - тепловыделяющий сердечник с центральным продольным каналом; 2 - оболочка твэла; 3 - торцевые отражатели; 4 - компенсационный объем; 5 - фиксирующий элемент.

Решение поставленной задачи и достижение технического результата обеспечивается совместным влиянием взаимосвязанных существенных признаков на ресурсное поведение твэла и обосновывается следующим.

По экспериментальным данным, полученным авторами, открытая пористость в сердечнике 1 на уровне 10-15% приводит к уменьшению скорости газового распухания в 2-2,5 раза при одновременном увеличении скорости ползучести в 5-10 раз. Уменьшение скорости распухания диоксида приводит к соответствующему уменьшению деформации оболочки, а увеличение скорости его ползучести способствует более эффективному перераспределению оболочкой 2 распухающего топлива в направлении центрального канала в тепловыделяющем сердечнике.

В то же время часть активной зоны по длине твэла, составляющей не более 0,2-0,4 ее общей длины, со стороны входа теплоносителя может эксплуатироваться при относительно низкой температуре диоксида урана (менее 1200°С), когда его газовое распухание не проявляется, а имеющее место практически независящее от температуры твердое распухание не лимитирует ресурс твэла, так как характеризуется низкой скоростью и составляет ~0,3%/% т.а. В этом случае целесообразно указанный участок столба топливных таблеток выполнить из плотного диоксида урана (95-97% теоретической плотности), что дает пропорциональное повышение плотности, увеличение содержания 235U в топливе и соответствующее уменьшение габаритов твэла и реактора в целом. Таким образом, протяженность участка сердечника с открытой пористостью со стороны выхода теплоносителя составляет не менее 0,6-0,8 от длины активной зоны.

Наряду с распуханием вследствие высоких температур рассматриваемого твэла активизировано и газовыделение из диоксида урана, которое также может вносить существенный вклад в деформацию ползучести оболочки. Однако этот процесс не является основным ресурсоограничивающим фактором, поскольку давление ГПД в твэле обычно снижают до приемлемого уровня выбором величины компенсационного объема, который размещается за пределами активной зоны реактора и поэтому в меньшей мере влияет на его массогабаритные характеристики.

Поскольку в предложенной конструкции использован диоксид урана с открытой пористостью, то выход ГПД за счет этого дополнительно увеличивается. Проведенные по известной модели Буса оценки показали, что это увеличение не превышает 30-40%. Так как компенсационный объем 4 и фиксирующий элемент 5 конструктивно объединены и выполнены сообщающимися, то свободный объем для компенсации давления ГПД увеличивается за счет свободного объема фиксирующего элемента и по расчетам составляет 1,3-1,5 от значения компенсационного объема до объединения с фиксирующим элементом. Такое увеличение объема является достаточным для компенсации указанного дополнительного газовыделения без увеличения габаритов твэла. Возможность размещения фиксирующего элемента со стороны входа теплоносителя связана с тем, что рабочая температура оболочки на входном участке рассматриваемого твэла достигает 1000-1200°С и является достаточной для быстрой релаксации исходных напряжений в фиксирующем элементе, например, в виде стальной пружины при выходе твэла на номинальный режим работы. Исходные напряжения в фиксирующем элементе необходимы для создания осевого усилия на столб топливных таблеток в обеспечение их вибропрочности в режиме запуска ЯЭУ на целевую орбиту.

Необходимая величина пористости в диоксиде урана для оптимизации его эксплуатационных характеристик по экспериментальным данным, полученным авторами, составляет, как отмечалось, 10-15%, а допустимая по нейтронно-физическим характеристикам реактора величина суммарного свободного объема пористости и центрального канала в твэлах космических ЯЭУ не превышает 20-30% [Г.М.Грязнов, Е.Е.Жаботинский и др. Термоэмиссионные реакторы-преобразователи космических ЯЭУ. - Атомная энергия, 1989, т.66, вып.6, с.374-377]. Объединение этих требований определяет допустимые значения (0,2-0,7) отношения объема пористости в диоксиде урана к суммарному свободному объему в твэле на длине, где использован диоксид урана с указанной выше пористостью.

Эффективность перераспределения распухания диоксида в направлении центрального канала в сердечнике, а также сохранение стабильного диаметрального размера оболочки при одностороннем внешнем давлении газового теплоносителя в начальный период эксплуатации твэла обеспечивается использованием упрочненного монокристаллического сплава, например, W-3% мас. Та, имеющего скорость ползучести при рабочих напряжениях на ~3 порядка ниже, чем у базового (Wмоно) материала. Упрочнение того же уровня достигается и в других монокристаллических сплавах на основе вольфрама, но в рассматриваемом быстром реакторе предпочтительно использовать легирование танталом, который имеет резонансный захват тепловых нейтронов, что способствует ядерной безопасности в аварийной ситуации, связанной с попаданием реактора в воду. Необходимость использования монокристаллического материала оболочки связана с указанным выше высоким эффектом его упрочнения и малым проникновением через оболочку компонентов топлива и продуктов деления: скорость диффузионного проникновения урана через монокристаллическую оболочку на ~2 порядка ниже, чем в случае поликристаллического материала. [А.С.Гонтарь, М.В.Нелидов и др. Конструкционные и топливные материалы твэлов термоэмиссионных ЯЭУ. - Атомная энергия, 2005, т.99, вып.5, с.365-371].

Возможность легирования сплава W-Ta до ~5% мас. Та с целью дальнейшего снижения скорости ползучести в 5-7 раз без существенной потери пластичности позволяет эксплуатировать твэл при относительно более высоком давлении ГПД в твэле, уменьшив за счет этого величину компенсационного объема и улучшив тем самым массогабаритные характеристики твэла и реактора в целом.

В обоснование выбора преимущественного размера и вида технологических пор на фиг.2 представлены расчетные значения скорости миграции вакуумных и заполненных инертным газом (Не, Хе) пор в зависимости от их размера и газового давления. Расчеты проведены для наиболее напряженного поперечного сечения рассматриваемого нами твэла с жестким сочетанием в нем температуры (1750°С) и температурного градиента (900 град/см). Минимальное рабочее давление инертного газа принято равным 0,4 МПа, что соответствует обычно используемому для уменьшения перепада температуры в зазоре между сердечником и оболочкой давлению заполнения гелием, равному ~0,1 МПа при комнатной температуре.

Видно, что в области малых характерных для прототипа размеров пор (<3 мкм) все кривые сливаются в одну, так как в этом случае миграция пор контролируется поверхностной диффузией и поэтому практически не зависит от среды и давления в поре, остается одинаковой для закрытых пор, как в прототипе, так и при использовании открытой пористости. Реализуемые в этом случае высокие скорости миграции не позволяют исходную пористость локализовать в сердечнике в течение заданного длительного ресурса 5-10 лет: при характерной толщине стенки таблетки 3-4 мм пористость, как следует из фиг.2, выходит из топлива за времена, существенно меньшие ресурса.

Используя как в прототипе закрытую пористость и увеличивая радиус вакуумных пор свыше 5 мкм, снова приходим, как видно из фиг.2, к неприемлемо высоким скоростям миграции, так как в этом случае миграция осуществляется по механизму испарения-конденсации паров диоксида урана. Предлагаемое использование открытой пористости в этом диапазоне размеров пор приводит к существенно более низким скоростям миграции, так как массоперенос в порах осуществляется диффузией молекул диоксида в газовой среде гелия и пористость остается практически стабильной. В случае, когда открытые поры заполнены ксеноном, скорость миграции пор дополнительно снижается примерно на порядок. Этот случай отражает реальные условия работы рассматриваемого твэла, в котором газовое давление за ресурс увеличивается до 2-3 МПа за счет выхода ГПД (в основном ксенона). Поскольку Хе более эффективно, чем Не замедляет массоперенос, то он также может рассматриваться в качестве газового заполнителя твэла предпочтительно в смеси с Не, который существенно увеличивает теплопроводность смеси с низкотеплопроводным Хе.

В целом данные фиг.2 свидетельствуют о стабильности исходных технологических пор диаметральным размером не менее 10 мкм в газовой среде инертного газа при давлении заполнения более 0,1 МПа. Эти данные обосновывают также работоспособность центрального канала сердечника с точки зрения обеспечения отвода ГПД из сердечника в компенсационный объем. Канал благодаря газовому давлению остается не заблокированным конденсатом диоксида урана, так как характерный осевой градиент температуры находится на уровне 100 град/см, а диаметр канала составляет 3-5 мм и таким образом в нем реализуются менее напряженные, чем в порах, условия для массопереноса. Центральный канал со стороны входа теплоносителя соединен с компенсационным объемом отверстием в торцевом отражателе 3, а со стороны выхода теплоносителя для предотвращения выноса диоксида урана за пределы активной зоны снабжен заглушкой, в виде верхнего сплошного торцевого отражателя 3.

Описанное техническое решение направлено, прежде всего, на снижение газового распухания диоксида урана и сохранение этого эффекта при длительном ресурсе в обеспечение пространственной стабильности твэла при вышеуказанных рабочих температурах диоксида.

Пример конкретного осуществления изобретения.

Сердечник 1 тепловыделяющего элемента по настоящему изобретению выполнен из диоксида урана с преимущественно открытой пористостью 10% в виде кольцевых таблеток с наружным диаметром 14,9 мм и внутренним - 3 мм. Оболочка 2 толщиной 1 мм и внешним диаметром 15 мм изготовлена из упрочненного монокристаллического сплава W+3% мас. Та на всю длину активной зоны протяженностью 500 мм. Скорость ползучести указанного сплава на 3 порядка ниже, чем базового материала Wмоно, а коэффициент диффузии урана на ~2 порядка ниже, чем у Wполи. Внутренняя полость твэла заполнена гелием с давлением 0.1 МПа. Торцевой отражатель 3 высотой 60 мм изготовлен из ВеО, при этом со стороны выхода теплоносителя изготовлен без центрального отверстия и выполняет одновременно функцию торцевой заглушки, предотвращающей вынос диоксида за пределы активной зоны твэла. Отражатель 3 со стороны входа теплоносителя снабжен центральным каналом, соосным с центральным каналом сердечника, и выполнен сообщающимся с компенсационным объемом 4 и далее с последовательно размещенным фиксирующим элементом 5 в виде пружины сжатия, изготовленной из прочной стали 10Х11Н2373 МР. Высота компенсационного объема и высота фиксирующего элемента выбраны равными 0,3 и 0,15 от длины активной зоны твэла соответственно.

На этапе запуска реактора на орбиту при воздействии на твэл вибрационной нагрузки (с осевой перегрузкой 10g) напряжения в витках пружины (20 витков диаметром 2 мм) остаются в упругой области, предотвращают таблетки от разрушения и быстро релаксируют при разогреве твэла, обеспечивая возможность беспрепятственного термического перемещения сердечника относительно оболочки.

В ресурсе при характерных рабочих параметрах твэла газоохлаждаемой космической ЯЭУ (максимальные значения температуры оболочки и плотности энерговыделения составляют 1500°С и 100 Вт/см3 соответственно) оболочка сохраняет стабильные размеры при воздействии внешнего газового давления 3 МПа, распухающего сердечника и давления ГПД в течение ресурса более 5 лет.


НЕВЕНТИЛИРУЕМЫЙ ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА
НЕВЕНТИЛИРУЕМЫЙ ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ ЯДЕРНОГО РЕАКТОРА
Источник поступления информации: Роспатент

Showing 61-70 of 82 items.
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.2f6c

Способ программирования физической нагрузки челночными упражнениями

Изобретение относится к медицине, а именно к спортивной медицине, и может быть использовано при определении уровня физической работоспособности. Для этого осуществляют выполнение челночных упражнений - передвижения по отрезкам в направлении туда и обратно. Увеличение скорости движений в...
Тип: Изобретение
Номер охранного документа: 0002644691
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
Showing 61-70 of 74 items.
20.01.2018
№218.016.156d

Термоэмиссионный тепловыделяющий элемент

Изобретение относится к области прямого преобразования тепловой энергии в электрическую и может быть использовано при создании долгоресурсных термоэмиссионных электрогенерирующих каналов (ЭГК). Предложена конструкция твэла, включающего герметичную оболочку, выполненную из упрочненного...
Тип: Изобретение
Номер охранного документа: 0002634848
Дата охранного документа: 07.11.2017
04.04.2018
№218.016.2f6c

Способ программирования физической нагрузки челночными упражнениями

Изобретение относится к медицине, а именно к спортивной медицине, и может быть использовано при определении уровня физической работоспособности. Для этого осуществляют выполнение челночных упражнений - передвижения по отрезкам в направлении туда и обратно. Увеличение скорости движений в...
Тип: Изобретение
Номер охранного документа: 0002644691
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.376a

Способ переработки отходов ядерного производства

Изобретение относится к области ядерной энергетики. Способ переработки отходов ядерного производства включает электрохимическое растворение твэлов в растворе азотной кислоты в электролизере при постоянном поддержании концентрации азотной кислоты в диапазоне 5,0÷6,0 М. Корпус электролизера...
Тип: Изобретение
Номер охранного документа: 0002646535
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
13.09.2018
№218.016.8747

Материал для экранно-вакуумной теплоизоляции и способ его изготовления

Изобретение относится к тепловой защите объектов космической и/или криогенной техники, а также может быть использовано в других отраслях народного хозяйства. Материал состоит из чередующихся слоев экранов металлизированной теплоотражающей перфорированной пленки и сепарационной прокладки. В...
Тип: Изобретение
Номер охранного документа: 0002666884
Дата охранного документа: 12.09.2018
28.02.2019
№219.016.c853

Ампульное устройство для реакторных исследований

Изобретение относится к ядерной технике, а именно к ампульным облучательным устройствам для реакторных исследований свойств тепловыделяющих элементов. Ампульное устройство для реакторных исследований включает внешнюю цилиндрическую оболочку с герметизирующими торцевыми крышками, внутри которой...
Тип: Изобретение
Номер охранного документа: 0002680721
Дата охранного документа: 26.02.2019
01.03.2019
№219.016.cccc

Устройство для измерения содержания водорода в жидкостях и газах

Изобретение может быть использовано в энергетике, ядерной технике, химической технологии, металлургии, газовом анализе для измерения содержания водорода в расплавах щелочных металлов и их парах, инертных газах и водяном паре. Устройство содержит электрохимическую ячейку (ЭХЯ) (1) с твердым...
Тип: Изобретение
Номер охранного документа: 0002334979
Дата охранного документа: 27.09.2008
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
+ добавить свой РИД