×
10.01.2013
216.012.19d7

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, предназначено для измерения механических величин и может быть использовано в средствах автоматизации контроля технологических процессов. Устройство содержит первичный преобразователь, источник питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления, устройство компенсации основной погрешности. Также в него введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь. При этом выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики. Технический результат заключается в компенсации погрешности, вызванной долговременной нестабильностью первичного преобразователя и погрешностей, вызванных механическими перегрузками датчика, метрологический самоконтроль и увеличение межповерочного интервала. 2 ил.
Основные результаты: Датчик давления, содержащий первичный преобразователь, источник питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления, устройство компенсации основной погрешности, отличающийся тем, что введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь, причем выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики.

Изобретение относится к измерительной технике, предназначено для измерения механических величин - давления, деформаций, перемещений и может быть использовано в средствах автоматизации контроля технологических процессов сложных технических систем топливоэнергетического комплекса, АЭС, автомобильного и железнодорожного транспорта и других отраслях промышленности.

Известен датчик механических величин, содержащий устройство на поверхностных акустических волнах, выполненное в виде резонатора с входным и выходным встречно-штыревыми преобразователями, заключенное в герметичный корпус с осушенной контролируемой средой и через гермовыводы входной и выходной встречно-штыревой преобразователя подключенное к управляющему органу, выполненному в виде микропереключателя, связанному через регулирующий элемент с преобразователем "механическая величина-перемещение" в виде сильфона.

Патент Российской Федерации №2247954, МПК: G01L 9/08, H03H 9/145, 2005 г.

Известно устройство для преобразования неэлектрической величины в электрический сигнал, содержащее источник тока, блок коррекции, блок преобразования импеданса в выходной сигнал, выход которого соединен с нагрузочным резистором, отличающееся тем, что оно снабжено стабилизатором питающих и опорных напряжений, образующих с источником тока блок питания, масштабирующим усилителем, дифференциальные входы которого соединены с измерительной диагональю измерительного моста, независимым регулируемым и масштабируемым каналом коррекции температурной погрешности "нуля", состоящим из суммирующего блока, вход которого соединен с выходом масштабирующего усилителя и блока коррекции температурной погрешности "нуля", коммутатором пределов измерения, независимым регулируемым и масштабируемым каналом коррекции температурной погрешности "диапазона", состоящим из перемножающего моста, выход которого соединен с входом блока преобразования импеданса в выходной сигнал, и блока коррекции температурной погрешности "диапазона", выход которого подключен ко второму входу блока преобразования импеданса, коммутатор пределов измерения включен между выходом блока коррекции и входом перемножающего моста, блок коррекции выполнен в виде блока коррекции статической нелинейности измерительного моста, вход которого подключен к выходу суммирующего блока, выход опорного напряжения блока питания соединен с входами опорного напряжения блоков коррекции температурной погрешности "нуля" и "диапазонов", суммирующего блока, блока коррекции и блока преобразования импеданса, источник тока блока питания подключен к информационному входу блока коррекции температурной погрешности "нуля" и к диагонали питания измерительного моста, выполненного температурно-зависимым, второй вход перемножающего моста подключен к информационному входу блока коррекции температурной погрешности "диапазона", перемножающий мост выполнен в виде резистивного моста с четырьмя плечами, по крайней мере, в одном из плеч которого резистор выполнен температурно-зависимым, и дифференциального усилителя, входами включенного в измерительную диагональ резистивного моста, выход усилителя является вторым выходом перемножающего моста, а диагональ питания резистивного моста подключена между входом и первым выходом перемножающего моста.

Патент Российской Федерации №2087857 МПК: G01B 7/16, 1997 г. Прототип.

Недостатком прототипа является то, что датчики давления, изготовленные в соответствии с приведенным техническим решением, имеют сравнительно короткий межповерочный интервал, как следствие, дополнительные затраты на обслуживание, демонтаж, поверку/калибровку, монтаж, обусловленные отсутствием метрологического самоконтроля.

Задачей изобретения является создание датчика давления с функцией метрологического самоконтроля.

Техническим результатом изобретения является компенсация погрешности, вызванной долговременной нестабильностью первичного преобразователя и погрешностей, вызванных механическими перегрузками датчика, метрологический самоконтроль и увеличение межповерочного интервала.

Технический результат достигается тем, что в датчик давления, содержащий первичный преобразователь, источник тока для питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления и устройство компенсации основной погрешности, введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь, причем выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики.

Изобретение поясняется на фигурах 1 и 2.

На фиг.1 приведена структурная схема датчика, где: 1 - источник тока питания первичного преобразователя; 2 - первичный преобразователь; 3 - датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления; 4 - датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления; 5 - нормирующий усилитель; 6 - устройство компенсации аддитивной составляющей температурной погрешности сигнала давления; 7 - устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления; 8 - устройство компенсации основной погрешности и переключения пределов измерения; 9 - устройство сопряжения датчика с линией электропитания; 10 - блок метрологического контроля и самодиагностики; 11 - потенциометр оперативной регулировки нуля.

На фиг.2 приведена структурная схема блока метрологического контроля и самодиагностики 10, где: 12 - сумматор сигналов; 13 - цифровой потенциометр с энергонезависимой памятью; 14 - микропроцессор; 15 - аналого-цифровой преобразователь; 16 - формирователь команды метрологического самоконтроля; VSS - отрицательный полюс питания прибора.

Для использования датчика в рабочем режиме его необходимо предварительно настроить.

Движок цифрового потенциометра с энергонезависимой памятью 13 блока метрологического контроля и самодиагностики 10 устанавливают в среднее положение. Производят настройку датчика по параметрам компенсации основной погрешности и компенсации температурных погрешностей датчика. Настраивают блок метрологического контроля и самодиагностики 10. Вход датчика соединяют с атмосферой. За опорное значение параметра, характеризующего критическую составляющую погрешности, принимают разность потенциалов между выходом устройства компенсации основной погрешности и переключения пределов измерения 8 и цепью VSS датчика. С помощью аналого-цифрового преобразователя 15 указанную разность потенциалов преобразуют в цифровой код и записывают полученное значение вместе с предельно допустимыми значениями основной допускаемой погрешности, установленными для данного датчика, в память микропроцессора 14 с атрибутом «только для чтения».

Устройство работает следующим образом. При воздействии давления происходит деформация первичного преобразователя 2, что приводит к изменению номиналов плеч резистивного моста или изменению номиналов емкостей ячейки первичного преобразователя 2.

При изменении номиналов плеч моста (резистивного или емкостного) на выходах измерительной диагонали появляется разность потенциалов, которую усиливает нормирующий усилитель 5. Сигнал через устройство компенсации аддитивной составляющей температурной погрешности сигнала давления 6 и устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления 7 поступает на вход устройства компенсации основной погрешности и переключения пределов измерения 8, где линеаризуется и преобразуется во входной сигнал для устройства сопряжения датчика с линией электропитания 9.

Сигнал с датчика температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления 3 с независимыми весовыми коэффициентами для температуры ниже и выше температуры калибровки поступает на вход устройства компенсации аддитивной составляющей температурной погрешности сигнала давления 6. Сигнал с датчика температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления 4 с независимыми весовыми коэффициентами для температуры ниже и выше температуры калибровки поступает на вход устройства компенсации мультипликативной составляющей температурной погрешности сигнала давления 7. Происходит постоянная адаптация сигнала первичного преобразователя 2 к воздействию температуры окружающей среды.

Блок метрологического контроля и самодиагностики 10 работает следующим образом. При подаче на вход датчика давления, соответствующего нулевому значению измеряемого параметра (для большинства типов датчиков атмосферное давление), и поступлении команды от формирователя команды метрологического самоконтроля и диагностики 16 сигнал с выхода устройства компенсации основной погрешности и переключения пределов измерения 8 преобразуется в цифровой код.

Из результата преобразования с выхода устройства компенсации основной погрешности и переключения пределов измерения 8 микропроцессор 14 вычитает значение, хранящееся в памяти коэффициентов и калибровочных значений микропроцессора 14, полученное в процессе изготовления и калибровки прибора на предприятии-изготовителе и, в случае, если эта разность превышает значение предела основной допускаемой погрешности, процессор выдает сигнал управления цифровым потенциометром для компенсации ошибки измерений, вызванной долговременной нестабильностью первичного преобразователя 2, или механическими изменениями, вызванными перегрузками первичного преобразователя 2. Микропроцессор 14 производит запись нового значения кода управления в энергонезависимую память цифрового потенциометра 13 блока метрологического контроля и самодиагностики 10.

То есть путем оценки отклонения параметра, характеризующего критическую составляющую погрешности, от принятого опорного значения этого параметра датчик осуществляет метрологический диагностический самоконтроль и автоматическую коррекцию погрешности, появившейся в результате воздействия влияющих величин и/или старения компонентов. При разности кодов в пределах числового значения основной допускаемой погрешности микропроцессор 14 вырабатывает команду на сохранение текущего состояния цифрового потенциометра.

Датчик давления, содержащий первичный преобразователь, источник питания первичного преобразователя, датчик температуры для компенсации аддитивной составляющей температурной погрешности сигнала давления, датчик температуры для компенсации мультипликативной составляющей температурной погрешности сигнала давления, нормирующий усилитель, устройство компенсации аддитивной составляющей температурной погрешности сигнала давления, устройство компенсации мультипликативной составляющей температурной погрешности сигнала давления, устройство компенсации основной погрешности, отличающийся тем, что введен блок метрологического контроля и диагностики, содержащий сумматор сигналов, цифровой потенциометр с энергонезависимой памятью, микропроцессор и аналого-цифровой преобразователь, причем выход цифрового потенциометра с энергонезависимой памятью соединен с входом сумматора сигналов, второй вход сумматора сигналов соединен с выходом потенциометра оперативной регулировки нуля, а выход сумматора сигналов соединен с входом устройства компенсации аддитивной составляющей температурной погрешности сигнала давления, выход устройства компенсации основной погрешности и переключения пределов измерений соединен с входом аналого-цифрового преобразователя, соединенного с микропроцессором, выход микропроцессора соединен с входом цифрового потенциометра блока метрологического контроля и самодиагностики.
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ
Источник поступления информации: Роспатент

Showing 131-140 of 191 items.
26.08.2017
№217.015.deb7

Способ изготовления титано-тритиевой мишени нейтронной трубки

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на...
Тип: Изобретение
Номер охранного документа: 0002624913
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deba

Способ изготовления фотоэлектронного прибора

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002624910
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.debd

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Генератор нейтронов содержит проводящий заземленный корпус,...
Тип: Изобретение
Номер охранного документа: 0002624914
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.dece

Способ определения местоположения источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Технический результат: уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения. Сущность: в способе определения местоположения источника сигналов, заключающемся в том,...
Тип: Изобретение
Номер охранного документа: 0002624984
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedc

Способ нейтронного каротажа для определения содержания урана в ураново-рудных формациях, пересеченных скважиной

Использование: для определения содержания урана в ураново-рудных формациях, пересеченных скважиной, посредством нейтронного каротажа. Сущность изобретения заключается в том, что получают во множестве точек записи значений скорости счета мгновенных нейтронов деления и значений скорости счета...
Тип: Изобретение
Номер охранного документа: 0002624985
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.def0

Скважинное устройство для измерения нейтронной пористости

Использование: для геофизических исследований параметров геологических пластов методом компенсированного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что устройство содержит цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник...
Тип: Изобретение
Номер охранного документа: 0002624996
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.def6

Способ автоматизированного определения синфазности или противофазности двух сигналов произвольной формы

Изобретение относится к измерительной технике, в частности к способам контроля и определения параметров определения синфазности или противофазности двух анализируемых сигналов, например, для фазировки обмоток трансформаторов. Раскрыт способ автоматизированного определения синфазности или...
Тип: Изобретение
Номер охранного документа: 0002624988
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df0e

Способ измерения радиоактивности тритиевой мишени в запаянной нейтронной трубке

Изобретение относится к области радиационного контроля, а именно к способам измерения бета-радиоактивности тритиевой мишени в запаянных (отпаянных) нейтронных трубках. Сущность изобретения заключается в том, что неизвестную радиоактивность тритиевой мишени А в нейтронной трубке определяют,...
Тип: Изобретение
Номер охранного документа: 0002624987
Дата охранного документа: 11.07.2017
Showing 131-140 of 155 items.
26.08.2017
№217.015.deb7

Способ изготовления титано-тритиевой мишени нейтронной трубки

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на...
Тип: Изобретение
Номер охранного документа: 0002624913
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deba

Способ изготовления фотоэлектронного прибора

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002624910
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.debd

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Генератор нейтронов содержит проводящий заземленный корпус,...
Тип: Изобретение
Номер охранного документа: 0002624914
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.dece

Способ определения местоположения источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Технический результат: уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения. Сущность: в способе определения местоположения источника сигналов, заключающемся в том,...
Тип: Изобретение
Номер охранного документа: 0002624984
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedc

Способ нейтронного каротажа для определения содержания урана в ураново-рудных формациях, пересеченных скважиной

Использование: для определения содержания урана в ураново-рудных формациях, пересеченных скважиной, посредством нейтронного каротажа. Сущность изобретения заключается в том, что получают во множестве точек записи значений скорости счета мгновенных нейтронов деления и значений скорости счета...
Тип: Изобретение
Номер охранного документа: 0002624985
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.def0

Скважинное устройство для измерения нейтронной пористости

Использование: для геофизических исследований параметров геологических пластов методом компенсированного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что устройство содержит цилиндрический охранный корпус, внутри которого последовательно вдоль его оси размещены источник...
Тип: Изобретение
Номер охранного документа: 0002624996
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.def6

Способ автоматизированного определения синфазности или противофазности двух сигналов произвольной формы

Изобретение относится к измерительной технике, в частности к способам контроля и определения параметров определения синфазности или противофазности двух анализируемых сигналов, например, для фазировки обмоток трансформаторов. Раскрыт способ автоматизированного определения синфазности или...
Тип: Изобретение
Номер охранного документа: 0002624988
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.df0e

Способ измерения радиоактивности тритиевой мишени в запаянной нейтронной трубке

Изобретение относится к области радиационного контроля, а именно к способам измерения бета-радиоактивности тритиевой мишени в запаянных (отпаянных) нейтронных трубках. Сущность изобретения заключается в том, что неизвестную радиоактивность тритиевой мишени А в нейтронной трубке определяют,...
Тип: Изобретение
Номер охранного документа: 0002624987
Дата охранного документа: 11.07.2017
+ добавить свой РИД