×
10.01.2013
216.012.1947

Результат интеллектуальной деятельности: СПОСОБ ВОССТАНОВЛЕНИЯ ГЕРМЕТИЧНОСТИ ОБСАДНЫХ КОЛОНН

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности, а именно к способам восстановления герметичности обсадных колонн с большой приемистостью в интервале негерметичности. Способ восстановления герметичности обсадных колонн заключается в приготовлении смеси, состоящей из цемента с алюмосиликатными микросферами. Закачивают смесь в скважину с приемистостью более 250 м/сут в интервал негерметичности колонны и продавливают ее за колонну с созданием в конце закачки давления, превышающего давление разрушения микросфер, и промывают скважину. При этом в состав смеси добавляют 0,05-0,2% от веса цемента фиброволокна с размерами волокон длиной 3-18 мм диаметром 22-35 мкм. Содержание микросфер не превышает 20% в смеси. Причем после достижения давления разрушения микросфер закачку смеси прекращают, а сброс давления производят не менее чем через 3 мин, но не более времени загустевания тампонажной смеси в обсадной колонне. Техническим результатом является повышение прочности и долговечности цементного камня за счет соотношения алюмосиликатных микросфер с цементом и добавлением армирующего фиброволокна заданной длины. 1 з.п. ф-лы, 1 пр., 1 табл.

Предложение относится к нефтегазодобывающей промышленности, а именно к способам восстановления герметичности обсадных колонн с большой приемистостью в заколонном пространстве.

Известен «Способ восстановления герметичности эксплуатационных колонн» (пат. RU №2116432, МПК E21B 33/13, опубл. 27.07.1998, бюл. №21), включающий закачку в зону изоляции минерального вяжущего и жидкости отверждения. В качестве минерального вяжущего в способе используют жидкое стекло, а в качестве жидкости отверждения - водный раствор хлористого кальция, причем закачку этих реагентов в скважину производят одновременно раздельно, до образования геля, затем дополнительно создают блокирующую оторочку «Продуктом 119-204» с последующим докреплением цементным раствором.

Недостаток данного способа заключается в том, что он не предусматривает введения в цементный раствор загущающих или расширяющих минеральных добавок, поэтому, как показывает практика, при повышенной приемистости интервала негерметичности успешность изоляционных работ не превышает 20%.

Наиболее близким по технической сущности к заявленному изобретению является «Способ восстановления герметичности обсадных колонн» (пат. RU №2211305, МПК E21B 33/138, опубл. 27.08.2003, бюл. №24), включающий затворение цемента с минеральными добавками, закачку полученной тампонажной смеси в скважину и продавку ее за колонну. В качестве минеральных добавок в способе используют силикатные или алюмосиликатные микросферы, при этом предварительно определяют приемистость скважины в интервале негерметичности и при приемистости более 250 м3/сут затворяют цемент с указанными добавками, причем при продавке тампонажной смеси в скважине, на глубине негерметичности, создают давление, превышающее давление смятия микросфер.

Недостатком данного способа является то, что цементный камень после затвердевания имеет пористую структуру: небольшие полости 100-200 мкм с водой и остатками микросфер, охваченные цементным камнем, местами данные стенки являются тонкими и разрушаются по истечении времени (через год-два), нарушая герметичность заколонного пространства и, как следствие, происходит разгерметизация обсадной колонны, после чего необходимо производить повторные работы по восстановлению герметичности обсадной колонны, что приводит к дополнительным материальным затратам, так как образующийся тампонажный камень является недостаточно долговечным и ударопрочным и не соответствует показателям по трещинностойкости как на этапе усадки, так и в дальнейшем, при эксплуатации скважины, особенно это актуально при применении цементного раствора с содержанием более 20% силикатных или алюмосиликатных микросфер.

Технической задачей предлагаемого изобретения является создание экономически целесообразного способа восстановления герметичности обсадной колонны с получением герметичного, прочного и долговечного цементного камня в заколонном пространстве и в поглощающем пласте за счет оптимального соотношения алюмосиликатных микросфер с цементом и армирующего фиброволокна заданной длины.

Техническая задача решается способом восстановления герметичности обсадных колонн, включающим приготовление смеси, состоящей из цемента с алюмосиликатными микросферами, закачку смеси в скважину с приемистостью более 250 м3/сут в интервал негерметичности колонны и продавку ее за колонну с созданием в конце закачки давления, превышающего давление разрушения микросфер, и промывку скважины.

Новым является то, что в состав смеси добавляют 0,05-0,2% от веса цемента фиброволокна с размерами волокон 3-18 мм диаметром 22-35 мкм, содержание микросфер не превышает 20% в смеси, причем после достижения давления разрушения микросфер закачку смеси прекращают, а сброс давления производят не менее чем через три минуты, но не более времени загустевания тампонажной смеси в обсадной колонне.

Новым является так же то, что при приемистости скважины 250-350 м3/сут в состав смеси добавляют фиброволокно с размерами волокон от 3 до 12 мм диаметром 22-35 мкм, а при приемистости скважины более 350 м3/сут в состав смеси добавляют фиброволокно с размерами волокон 12-18 мм диаметром 22-35 мкм.

Способ восстановления герметичности обсадных колонн осуществляется следующим образом.

В случаях нарушения герметичности обсадных колонн определяют интервал нарушения и приемистость. Если приемистость составляет не менее 250 м3/сут, то осуществляют предлагаемый способ.

Исходя из исследований, определяют необходимое количество закачиваемой смеси: цемента, 5-20% от веса цемента алюмосиликатных микросфер и фиброволокна с размерами волокон 3-18 мм диаметром 22-35 мкм. Ниже интервала перфорации устанавливают цементный мост. На скважине готовят тампонажную смесь, для чего в сухой цемент (например: тампонажный портландцемент ПЦТ-II-50 ГОСТ 1581-96 и т.п.) добавляют 5-20% от веса цемента (чем приемистость выше, тем большее количество микросфер используют в смеси) алюмосиликатных микросфер и 0,05-0,2% от веса цемента фиброволокна с размерами волокон длиной 3-18 мм диаметром 22-35 мкм, интенсивно перемешивая. Перед закачкой в скважину в сухую смесь добавляют необходимое количество воды, и полученную смесь закачивают по предварительно спущенным в скважину насосно-компрессорным трубам (НКТ) в интервал нарушения, куда продавливают, заполняя заколонное пространство обсадной колонны и поглощающий пласт. При закачке расчетного количества смеси в НКТ эту смесь продавливают по НКТ продавочной жидкостью (например: пресной водой или пластовой водой). После закачки расчетного количества продавочной жидкости в НКТ и, как следствие, тампонажной смеси в зону негерметичности обсадной колонны, расход закачиваемой продавочной жидкости увеличивают так, чтобы давление в интервале нарушения превысило давление разрушения микросфер (обычно 28-32 МПа), вследствие чего происходит быстрое загустевание тампонажного раствора. Затем закачку прекращают и оставляют скважину в закрытом состоянии не менее чем на 3 мин, но не более времени загустевания тампонажной смеси (для исключения прихвата в скважине колонны НКТ тампонажной смесью) в обсадной колонне (оно примерно в 2 раза больше времени загустевания тампонажной смеси, чем в заколонном пространстве), что исключает в этот период времени течение тампонажной смеси из заколонного пространства. После чего производят обратную промывку скважины, далее колонну НКТ приподнимают и оставляют для окончательного затвердевания цемента (ОЗЦ) в тампонажной смеси (обычно 24-48 ч).

В ходе практических испытаний было выявлено, что для достижения оптимального результата при приемистости в скважине 250-350 м3/сут в составе смеси оптимально использовать фиброволокна с размерами волокон длиной от 3 до 12 мм диаметром 22-35 мкм, что не приводит к повышенному сопротивлению и, как следствие, давлению закачки смеси в пласт с сохранением свойств получаемой тампонажной смеси при данной приемистости, а при приемистости скважины более 350 м3/сут в составе смеси оптимально использовать фиброволокна с размерами волокон длиной 12-18 мм диаметром 22-35 мкм, что позволяет получить более эффективную изоляцию обсадной колонны. В таблице приведены результаты опытно-промысловых работ на 9 скважинах ОАО « Татнефть».

Таблица
Результаты опытно-промысловых работ при различной приемистости
Фиброволокно 3, 6, 11 мм Фиброволокно 12, 18 мм
Приемистость, м3/сут 250 315 350 365 371 390 360 372 385
Результат + + + - - - + + +

Из таблицы следует, что при приемистости более 350 м3/сут применяемая технология с использованием фиброволокна с размером волокон от 3 до 12 мм диаметром 22-35 мкм показала отрицательный результат, с использованием же фиброволокна с размером волокон 12-18 мм диаметром 22-35 мкм технология показала положительный результат.

Алюмосиликатные полые микросферы выпускаются по ТУ 21-22-37-94 и представляют собой мелкодисперсный порошок, светло-серого (серого или бурого цвета) цвета, который состоит из полых частиц правильной сферической формы со сплошными непористыми стенками. Сферы имеют диаметр от 10 до 500 мкм, толщину стенки от 2 до 10 мкм и плотность 400-500 кг/м3. Прочность на разрушение при гидростатическом сжатии составляет до 32 МПа. Разрушение микросфер в тампонажной смеси давлением, превышающим давление разрушения микросфер, сопровождается рядом эффектов: во-первых, резко повышаются плотность и вязкость цементного раствора (до нормальной) за счет водоотделения; во-вторых, происходит активация цементного раствора за счет гидродинамических микроударов при «схлопывании» микросфер (кавитационный эффект), в-третьих, происходит некоторый разогрев цементного раствора за счет перехода энергии микроударов в тепловую энергию. Все эти эффекты способствуют быстрому загустеванию и схватыванию цементного раствора.

Фиброволокно - волокно строительное микроармирующее представляет собой однокомпонентное полипропиленовое волокно длиной 3-18 мм диаметром 22-35 мкм, изготовленное по ТУ 2272-006-13429727-2007 «Волокно строительное армирующее», марки ВСМ II. При содержании в тампонажной смеси в количестве 0,05-0,2% при закачке в пористую среду (которой и является пласт) они располагаются вдоль закачиваемого потока и практически не оказывают сопротивления при закачке, при резкой смене направления движения потока фибры волокна оказывают значительное сопротивление (до 10 МПа) в течение времени (обычно до 10 с), необходимого для переориентации волокон, если их в это время зафиксировать, то они надежно закольматируют пористую среду, что и используется в предлагаемом способе. При закачке тампонажной смеси в интервал нарушения фиброволокно не оказывает практически никакого влияния на давление закачки, после достижения давления, превышающего давление разрушения микросфер, за счет гидродинамических микроударов при «схлопывании» микросфер (кавитационный эффект), давление и при этом направление потока смеси меняется хаотически, что приводит к разнонаправленному расположению волокон фибры, а выдержка более трех минут (получено эмпирическим путем) позволяет произойти более интенсивному застыванию вокруг волокон загустевшего цемента, для которого гидрофильные фиброволокна играют роль центров отверждения за счет того, что происходит фиксация волокон фибры в хаотичном направлении, армирование застывающего цемента и исключение его несанкционированного перетока.

После выдержки для распределения волокон фибры производят обратную или прямую промывку: вымывание тампонажной смеси из обсадной колонны в объеме не менее 1,5 объема колонны НКТ, которую после промывки приподнимают на 150-200 м с доливом в скважину жидкости соответствующей плотности глушения скважины и оставляют скважину на ожидание затвердевания цемента (ОЗЦ) на 24-48 ч. Затем разбуривают цементный мост и опрессовывают обсадную колонну избыточным давлением, а для добывающих скважин - дополнительно снижением уровня. По истечении 16 ч допускается проведение работ в скважине, не приводящих к созданию избыточного давления (СПО).

Пример конкретного выполнения.

В скважине №7890 ОАО «Татнефть» Ромашкинского месторождения геофизическими методами был установлен интервал негерметичности в интервале 1430-1435 м. Непосредственно перед закачкой тампонажной смеси определили приемистость интервала негерметичности закачкой не менее 6,0 м3 технической жидкости с плотностью 1180 кг/м3 при давлении 4 МПа, приемистость составила около 320 м3/сут. Ниже интервала нарушения, над интервалом перфорации установили цементный мост. Прочность микросфер на разрушение определили заранее, она составила 28 МПа. Приготовили 15 м3 тампонажной смеси из портландцемента ПЦТ-П-50 с добавкой 10% от веса цемента алюмосиликатных микросфер и 0,05% от веса цемента полипропиленового фиброволокна ВСМ II по ТУ 2272-006-13429727-2007 «Волокно строительное армирующее» с размером волокон 6 мм. Сухую смесь, состоящую из тампонажного цемента, алюмосиликатных микросфер и фиброволокна, готовили заранее. Приготовление осуществляется следующим образом:

- цементовоз с компрессором набирает необходимое количество цемента, микросфер и фиброволокна. Количество компонентов замеряется на весах марки М 8200 А-6017М;

- смесь перемешивается 3 раза, перетариванием из одного цементовоза (ЗАС-30) в другой;

- приготовленная смесь перетаривается в цементосмеситель (УС6-30) или в отдельную емкость, предназначенную для хранения этой смеси.

Из полученной смеси готовится тампонажная смесь по штатной технологии.

Далее закачали приготовленную тампонажную смесь в скважину по колонне НКТ, продавили за обсадную колонну через интервал негерметичности.

Произвели продавку тампонажной смеси технологической жидкостью плотностью 1180 кг/м3 в объеме 4,23 м3 при начальном давлении 2 МПа и конечном давлении 13 МПа. На глубине 1430 м было достигнуто давление 29,5 МПа (большее, чем давление разрушения микросфер). Остановили закачку, выдержали 10 мин, после чего произвели промывку скважины, подняли колонну НКТ на 150 м и оставили скважину на ожидание затвердевания цемента (ОЗЦ) на 24 ч. Опрессовали колонну давлением 10 МПа - герметично. Спустили долото диаметром 106 мм на НКТ и разбурили цементный мост в интервале 1400-1435 м. Опрессовали обсадную колонну - герметично.

Цементный раствор с добавкой алюмосиликатных микросфер и фиброволокна с размером волокна 3 мм диаметром 22 мкм при водоцементном отношении 0,5 в нормальных условиях (давление 0,1 МПа, температура 20°C) имеет плотность 1550 кг/м3, растекаемость по конусу АзНИИ - 219 мм, время начала схватывания - 8 ч, механическая прочность на изгиб - 2,1 МПа, на сжатие - 11,1 МПа.

Цементный раствор с добавкой алюмосиликатных микросфер и фиброволокна с размером волокна 6 мм диаметром 25 мкм при водоцементном отношении 0,5 в нормальных условиях (давление 0,1 МПа, температура 20°C) имеет плотность 1550 кг/м3, растекаемость по конусу АзНИИ - 215 мм, время начала схватывания - 8 ч, механическая прочность на изгиб - 2,56 МПа, на сжатие - 11,62 МПа.

Цементный раствор с добавкой алюмосиликатных микросфер и фиброволокна с размером волокна 12 мм диаметром 31 мкм при водоцементном отношении 0,5 в нормальных условиях (давление 0,1 МПа, температура 20°C) имеет плотность 1550 кг/м3, растекаемость по конусу АзНИИ - 210 мм, время начала схватывания - 9 ч 35 мин, механическая прочность на изгиб - 3,34 МПа, на сжатие - 14,1 МПа.

Цементный раствор с добавкой алюмосиликатных микросфер и фиброволокна с размером волокна 18 мм диаметром 35 мкм при водоцементном отношении 0,5 в нормальных условиях (давление 0,1 МПа, температура 20°C) имеет плотность 1550 кг/м3, растекаемость по конусу АзНИИ - 200 мм, время начала схватывания - 10 ч 15 мин, механическая прочность на изгиб - 3,83 МПа, на сжатие - 14,2 МПа.

По отношению к наиболее близкому аналогу использование фиброволокна в тампонажной смеси повышает прочность тампонажного камня на изгиб и сжатие до 20 и 25% соответственно.

Все вышеперечисленное обуславливает низкую водопроницаемость тампонажного камня и увеличивает срок изоляции нарушения обсадной колонны как минимум в два раза, и на всех испытанных скважинах не потребовалось проводить повторных мероприятий по изоляции нарушения, требующих дополнительных материальных и финансовых затрат.

Предлагаемый способ восстановления герметичности обсадных колонн позволяет получить герметичный, прочный и долговечный цементный камень в заколонном пространстве и поглощающем пласте за счет оптимального соотношения алюмосиликатных микросфер с цементом и добавлением армирующего фиброволокна заданной длины, не требует проведения дополнительных технологических операций для изоляции интервала нарушения, что приводит к экономии средств и времени.

Источник поступления информации: Роспатент

Showing 521-530 of 534 items.
10.07.2019
№219.017.b07b

Способ освоения пласта скважины свабированием и устройство для его осуществления

Изобретение относится к области нефтяной и нефтегазовой промышленности и может быть использовано при освоении скважин после бурения и в процессе эксплуатации. Обеспечивает упрощение способа и конструкции устройства, а также исключение попадания скважинной жидкости в освоенный пласт. Сущность...
Тип: Изобретение
Номер охранного документа: 0002436944
Дата охранного документа: 20.12.2011
10.07.2019
№219.017.b080

Способ разработки залежи нефти массивного типа с послойной неоднородностью

Предложение относится к нефтяной промышленности и может найти применение при разработке залежей нефти массивного типа с послойной неоднородностью. Обеспечивает сокращение расходов на бурение скважин, увеличение охвата пластов выработкой, снижение добычи попутной воды, увеличение дебитов...
Тип: Изобретение
Номер охранного документа: 0002439298
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b083

Способ разработки месторождения высоковязкой нефти

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой нефти. Техническая задача - повышение эффективности процесса вытеснения высоковязкой нефти за счет возможности контроля температуры продукции, отбираемой из добывающей скважины, и...
Тип: Изобретение
Номер охранного документа: 0002439304
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b08a

Пакер гидромеханический

Изобретение относится к нефтегазодобывающей промышленности и предназначено для перекрытия осевого канала обсадных труб и исследования скважин при бурении и изоляции зон поглощения намывом раствора с наполнителем. Обеспечивает легкое извлечение из скважины, а также многократное использование без...
Тип: Изобретение
Номер охранного документа: 0002439286
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b08d

Устройство для поинтервального перекрытия зон осложнений при бурении скважин

Изобретение относится к нефтегазодобывающей промышленности, в частности к поинтервальному бурению и креплению осложненных участков ствола скважины. Устройство содержит перекрыватель, состоящий из секций профильных труб с цилиндрическими концами, развальцеватель с вальцующей головкой, оснащенный...
Тип: Изобретение
Номер охранного документа: 0002439283
Дата охранного документа: 10.01.2012
10.07.2019
№219.017.b09d

Устройство для преобразования вращательного движения в возвратно-поступательное

Изобретение относится к механизмам преобразования вращательного движения в возвратно-поступательное. Устройство для преобразования вращательного движения в возвратно-поступательное содержит цилиндрический толкатель (2) с криволинейными пересекающимися пазами заданной конфигурации прямого (3) и...
Тип: Изобретение
Номер охранного документа: 0002437014
Дата охранного документа: 20.12.2011
10.07.2019
№219.017.b0a8

Способ разработки залежи нефти в слоистых коллекторах

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежи нефти в слоистых карбонатных и терригенных коллекторах. Обеспечивает повышение эффективности разработки за счет увеличения охвата пластов, сокращения затрат на строительство и одновременной выработки...
Тип: Изобретение
Номер охранного документа: 0002431038
Дата охранного документа: 10.10.2011
10.07.2019
№219.017.b0b6

Способ определения обводненности продукции пластов в их смеси

Изобретение относится к нефтедобывающей промышленности, в частности к разработке и эксплуатации многопластовых месторождений. Способ определения обводненности продукции пластов в их смеси при совместной или одновременно-раздельной эксплуатации пластов включает отбор проб из каждого...
Тип: Изобретение
Номер охранного документа: 0002449118
Дата охранного документа: 27.04.2012
10.07.2019
№219.017.b10a

Способ определения пластового давления в нагнетательных скважинах

Изобретение относится к области добычи нефти и может быть использовано для определения пластового давления в нагнетательных скважинах. Способ определения пластового давления включает закачку рабочего агента в пласт и измерение забойного давления. Зона вскрытия пласта в скважине сверху и снизу...
Тип: Изобретение
Номер охранного документа: 0002441152
Дата охранного документа: 27.01.2012
10.07.2019
№219.017.b110

Способ разработки залежи высоковязкой нефти

Изобретение относится к нефтяной промышленности и может найти применение при разработке месторождения высоковязкой нефти. Обеспечивает повышение нефтеотдачи пласта путем повышения эффективности процесса вытеснения высоковязкой нефти за счет возможности контроля температуры продукции, отбираемой...
Тип: Изобретение
Номер охранного документа: 0002441148
Дата охранного документа: 27.01.2012
Showing 521-530 of 597 items.
12.04.2019
№219.017.0ba8

Способ укрепления призабойной зоны скважины

Изобретение относится к нефтедобывающей промышленности, в частности к способам укрепления призабойной зоны скважины и предотвращения выноса породы. Способ укрепления призабойной зоны скважины включает последовательную закачку закрепляющего состава и отвердителя. Закрепляющий состав содержит...
Тип: Изобретение
Номер охранного документа: 0002684625
Дата охранного документа: 10.04.2019
12.04.2019
№219.017.0bdc

Способ разработки нефтяной малоразведанной залежи

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке нефтяной малоразведанной залежи. Технический результат - повышение эффективности способа за счет повышения дебита добывающих скважин. По способу осуществляют разбуривание залежи редкой сеткой...
Тип: Изобретение
Номер охранного документа: 0002684556
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.324d

Способ кислотной обработки призабойной зоны пласта с карбонатным коллектором

Изобретение относится к нефтяной промышленности. Технический результат - повышение эффективности обработки призабойной зоны скважины и увеличение продуктивности скважин. Способ кислотной обработки призабойной зоны пласта с карбонатным коллектором включает два цикла закачки 10-15%-ного водного...
Тип: Изобретение
Номер охранного документа: 0002451160
Дата охранного документа: 20.05.2012
09.05.2019
№219.017.4958

Способ очистки почвы от загрязнения нефтью и нефтепродуктами

Изобретение относится к охране окружающей среды, в частности к рекультивации почв, загрязненных нефтью и нефтепродуктами. Предложен способ очистки почвы от загрязнения нефтью и нефтепродуктами, включающий удаление жидких фракций нефти и нефтепродуктов с рекультивированной поверхности, внесение...
Тип: Изобретение
Номер охранного документа: 0002687125
Дата охранного документа: 07.05.2019
09.05.2019
№219.017.4d57

Способ теплового воздействия на залежь высоковязкой нефти и битума

Изобретение относится к разработке нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Техническим результатом является увеличение охвата теплового воздействия на залежь. Способ включает бурение нагнетательных горизонтальных скважин,...
Тип: Изобретение
Номер охранного документа: 0002373384
Дата охранного документа: 20.11.2009
09.05.2019
№219.017.4df6

Способ разработки месторождений высоковязких нефтей и битумов скважинами с наклонно-горизонтальными участками

Изобретение относится к нефтедобывающей промышленности, в частности к разработке нефтяных месторождений, а именно отложений высоковязких нефтей и битумов с применением тепла в комплексе с наклонно-горизонтальными скважинами. Техническим результатом является увеличение охвата зоны выработки...
Тип: Изобретение
Номер охранного документа: 0002368766
Дата охранного документа: 27.09.2009
18.05.2019
№219.017.539e

Способ разработки залежи битуминозной нефти термическим воздействием на пласт

Изобретение относится к области нефтегазодобывающей промышленности. Технический результат - интенсификация отбора нефти, сокращение времени прогрева межскважинного пространства пласта, быстрое устранение прорывов теплоносителя в добывающую скважину с одновременным упрощением и удешевлением...
Тип: Изобретение
Номер охранного документа: 0002687833
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.5649

Способ изоляции водопритоков или зон поглощения в скважине

Изобретение относится к нефтяной промышленности, а именно к способам изоляции водопритоков или зон поглощения в скважине. Включает вскрытие бурением продуктивного пласта, предварительный прогрев призабойной зоны пласта пластовой водой с температурой не ниже 90°С, закачивание в скважину...
Тип: Изобретение
Номер охранного документа: 0002392418
Дата охранного документа: 20.06.2010
24.05.2019
№219.017.5f53

Способ разработки обводненной нефтяной залежи

Изобретение относится к нефтегазодобывающей промышленности и, в частности, к способам разработки нефтяной залежи пластового типа и может быть использовано для добычи остаточной продукции пласта в обводненной залежи. Технический результат - повышение эффективности разработки залежи. По способу...
Тип: Изобретение
Номер охранного документа: 0002688719
Дата охранного документа: 22.05.2019
24.05.2019
№219.017.60a7

Клиновой отклонитель для забуривания боковых стволов из скважины

Изобретение относится к области бурения и капитального ремонта газонефтяных скважин, а именно к устройствам, предназначенным для забуривания боковых стволов из ранее пробуренных обсаженных и необсаженных скважин. Содержит отклоняющий клин с гидравлическим якорем, канал для подачи жидкости,...
Тип: Изобретение
Номер охранного документа: 0002469172
Дата охранного документа: 10.12.2012
+ добавить свой РИД