×
10.01.2013
216.012.17a5

Результат интеллектуальной деятельности: ЦИЛИНДРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СЖАТИЯ ГАЗОВ ДО МЕГАБАРНЫХ ДАВЛЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области исследований в мегабарной области давлений квазиизэнтропической сжимаемости газов, например водорода, дейтерия, гелия и т.д. Устройство содержит блок цилиндрического взрывчатого вещества 1, охватывающий корпус 2 с полостью 3 для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная цилиндрическая оболочка 4. Таким образом, в устройстве конструктивно образуются две коаксиальные полости А и Б с исследуемым газом. Конструкция устройства предусматривает герметизацию полостей с исследуемым газом. В предложенном устройстве по оси полости 3 закреплен металлический цилиндрический стержень 8, электрически изолированный от элементов корпуса. Технический результат: снижение кумуляции энергии вблизи оси устройства и достижение практически равномерного распределения давления в области сжатого газа на момент его максимального сжатия (момент «остановки» оболочки). Введение металлического стержня, изолированного от элементов устройства, позволяет в одном эксперименте, кроме средней плотности, регистрировать электропроводность квазиизэнтропически сжатого газа, что повышает информативность опыта. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области исследовании квазиизэнтропическои сжимаемости газов, например водорода, дейтерия, гелия и т.д., в мегабарной области давлений.

Использование экспериментальной техники мощных ударных волн для изучения экстремальных состояний вещества является сегодня основным источником информации о поведении сильносжатой плазмы газов в области рекордно высоких температур и давлений мегабарного-гигабарного диапазона. Будучи экзотическими для земных условий, эти ультраэкстремальные состояния вполне характерны для большинства астрофизических объектов. Кроме того, с плазмой ультрамегабарного диапазона связываются перспективные энергетические проекты по управляемому термоядерному синтезу с инерционным удержанием плазмы и реализации высокотемпературных состояний в сжатом водороде.

Эти обстоятельства являются постоянно действующим стимулирующим фактором по экспериментальному изучению свойств сильносжатой неидеальной плазмы водорода, дейтерия и инертных газов мощными ударными волнами. Существенно бóльшие давления, превышающие почти на порядок значения давлений однократного ударно-волнового сжатия, при значительном снижении эффектов необратимого нагрева реализуются при квазиизэнтропическом сжатии веществ последовательностью падающих и отраженных ударных волн в устройствах плоской, цилиндрической и сферической геометрии.

Использованное в работе V.E.Fortov, R.I.Ilkaev, V.A.Arinin, V.V.Burtzev, V.A.Golubev, I.L.Iosilevskiy, V.V.Khrustalev, A.L.Mikhailov, M.A.Mochalov, V.Ya.Ternovoi, M.V.Zhernokletov. Phase Transition in Strongly Non-ideal Deutherium Plasma, Generated by Quasiisentropical Compression at Megabars. Phys. Rev. Lett. 99, 185001 (2007) устройство сжатия, выбранное в качестве прототипа, содержит заряд взрывчатого вещества (ВВ), охватывающий цилиндрический корпус с полостью для исследуемых газов, внутри которой коаксиально расположена дополнительная цилиндрическая оболочка. Сжатие газа в данной конструкции осуществляется под действием цилиндрических ударных волн и стальных оболочек, сходящихся к оси устройства. В некоторый момент времени, когда наступает равенство давления внутри сжатого газа и в оболочке, последняя останавливается, а затем разлетается. Такая конструкция позволяет получить высокие (в 10-50 раз) степени сжатия при существенном снижении температуры (примерно в 10 раз) по сравнению со сжатием вещества однократной ударной волной.

Подобные устройства сжатия используются для измерения средней плотности исследуемого газа. В серии экспериментов с помощью жесткого рентгеновского излучения регистрируется движение оболочки, сжимающей исследуемый газ. Из полученной экспериментально R(t) траектории движения находится радиус внутренней границы оболочки со сжатым газом в момент ее "остановки", что позволяет определить среднюю плотность сжатого газа из выражения

где ρО - начальная плотность вещества, R0 и Rt - внутренний радиус оболочки в исходном состоянии и в момент ее «остановки» соответственно, n=2 для устройства цилиндрической геометрии. Точность измерения положения границ оболочки, а следовательно, и плотности сжатого газа определяется качеством рентгеновского изображения, а именно контрастом границы газ-оболочка, зависящим от разницы в коэффициентах поглощения рентгеновского излучения газом µ1 и материалом оболочки µ2: (µ12)~(ρ1Z132Z233. В этом выражении: ρ1 и ρ2 - плотности газа и материала оболочки соответственно; Z1 и Z2 - атомный номер газа и материала оболочки соответственно, λ - длина волны излучения. Поэтому при исследовании сжимаемости, например, водорода, дейтерия или гелия оправдано применение в устройстве оболочек из стали (ρO=7,8 г/см3; Z=26).

Измеренная в эксперименте плотность ρ является одним из параметров, который используется для построения полуэмпирического уравнения состояния (УРС) F=F(ρ, Р), связывающего плотность и давление в исследуемом газе. Вторым параметром такого УРС является давление Р в сжатом газе. Ввиду трудностей прямого измерения давления в ударно-сжатой плазме газов в опыте с устройством сжатия, выбранном в качестве прототипа, давление в плазме определяется из газодинамических расчетов с учетом уравнений состояния, реальных термодинамических и прочностных свойств всех элементов экспериментального устройства.

Недостатком устройства, выбранного в качестве прототипа, является возрастание давления в исследуемом газе при схождении ударной волны к оси устройства, т.е. возникновение геометрической кумуляции энергии волны в газе. В связи с этим среднее значение давления в конечном объеме сжатого газа определяется с большим разбросом. Так, для одного из устройств реализации прототипа, рассчитанная зависимость давления в полости сжатого газа от радиуса показана на фиг.1. Видно, что отклонение рассчитанного профиля давления (кривая 1) от его среднего значения Рcp (линия 2) в диапазоне, где сосредоточено до 95% массы сжатого газа [R≈0,2 см÷Rt≈0,8 см], может достигать ~30%. Это слишком большая неопределенность, особенно, если исследуется область теоретически предполагаемого фазового перехода первого рода со скачком плотности в узком интервале давлений.

Задача, на решение которой направлено изобретение, заключается в создании устройства сжатия, с помощью которого можно получить зависимость давления в сжатом газе от радиуса полости оболочки на момент ее «остановки», отклонение которого от его среднего значения составляет не более 6%.

Технический результат, достигаемый при осуществлении заявленного изобретения, заключается в снижении геометрической кумуляции энергии вблизи оси устройства и достижении практически равномерного распределения давления в области сжатого газа на момент его максимального сжатия (момент «остановки» оболочки).

Указанный технический результат достигается тем, что в цилиндрическом устройстве для сжатия газов до мегабарных давлений, содержащем заряд взрывчатого вещества, охватывающий корпус с полостью для исследуемого газа, внутри которой коаксиально корпусу размещена дополнительная оболочка, новым является то, что вдоль оси устройства расположен цилиндрический металлический стержень.

Для получения возможности одновременно с определением средней плотности на основе рентгенографического измерения радиуса остановившейся оболочки регистрировать электропроводность квазиизэнтропически сжатого газа, концы металлического стержня электрически изолированы от корпуса.

На фиг.1 приведен график рассчитанной зависимости давления в сжатом газе от радиуса полости для устройства прототипа. На фиг.2 схематично изображено цилиндрическое устройство для сжатия газов до мегабарных давлений. На фиг.3 приведен график рассчитанной зависимости давления в сжатом газе от радиуса полости для заявляемого устройства.

Устройство содержит блок цилиндрического ВВ 1, охватывающий корпус 2 с полостью 3, внутри которой коаксиально корпусу размещена дополнительная цилиндрическая оболочка 4. Таким образом, в устройстве конструктивно образованы две коаксиальные полости А и Б для их заполнения исследуемым газом. Корпус 2 устройства изготовлен из высокопрочной стали, способной выдерживать высокое начальное давление газа, деформируясь в упругой области, без разрушения. Оболочка 4 также изготовлена из стали. Требования к ее прочности не предъявляются. Для изменения степени сжатия газа часть ВВ может заменяться прокладкой из диэлектрика 5. Стальные фланцы 6 и гайки 7 используются для герметизации полостей A и Б с исследуемым газом.

Для снижения кумуляции энергии в области газа в полости Б, приводящей к росту давления сжатого газа вблизи оси устройства прототипа, в предлагаемой конструкции вдоль оси закреплен металлический цилиндрический стержень 8, концы которого электрически изолированы от элементов корпуса 2 устройства прокладками 9. Размеры стержня выбираются, исходя из получения заданной величины неопределенности давления с учетом всех конструктивных параметров устройства. Материал стержня выбирается с учетом получения высокого контраста границы стержень (медь или сталь) - газ для данной рентгеновской установки.

Заявленное устройство работает следующим образом. После детонации ВВ возникает цилиндрическая ударная волна, которая, последовательно проходя по элементам устройства, транслируется в газ, находящийся в полости Б, сжимая и нагревая его. При схождении волны к оси устройства в полости Б формируется отраженная от металлического стержня 8 ударная волна, проходящая по уже сжатому и нагретому газу. Этот процесс оказывается близким к квазиизэнтропическому, т.к. после прохождения первой ударной волны дальнейшее сжатие газа в полости Б происходит практически без заметного набора энтропии газа. Таким образом, сжатие газа Б в полости 3 осуществляется системой цилиндрических ударных волн, циркулирующих в его объеме, и стальными лайнерами - корпусом 2 и оболочкой 4, сходящимися под действием продуктов взрыва ВВ к стержню 8.

Введение в устройство цилиндрического металлического стержня 8, размещенного в полости Б, устраняет «особую» область на оси цилиндрического устройства (R=0), где происходит фокусировка ударных волн. При наличии стержня отраженная волна формируется не в «особой» области при R=0, а на границе R*, где R* - радиус стержня. Тем самым снижается геометрическая кумуляция энергии, уменьшается амплитуда отраженной ударной волны и выравнивается распределение давления по радиусу полости со сжатым газом.

Рассчитанная зависимость распределения давления в полости сжатого газа для заявляемого устройства со стержнем приведена на фиг.3. Видно, что в заявляемом устройстве отклонение профиля рассчитанной зависимости давления (кривая 1) от его среднего значения (линия 2) не превышает величины ±4%.

Начальные параметры газа, плотность ВВ и фактические размеры экспериментальных устройств контролируются в каждом эксперименте. Температура газа измеряется термопарой Т, закрепленной на трубопроводе на входе в камеру высокого давления. Для контроля давления газа в заполняемом объекте в реальном времени используется тензометрический датчик давления. По измеренным начальным параметрам газа определяется его начальная плотность - ρO.

Для теневой регистрации изображения внутренней границы дополнительной оболочки 4, по которой определяется размер полости со сжатым газом в момент максимального сжатия (момент «остановки»), используется генератор мощных импульсов тормозного излучения. В эксперименте, где исследуемое вещество окружено металлическими оболочками и зарядом ВВ, эта методика измерения средней плотности сжатого газа является единственно возможной.

Введение металлического стержня, изолированного от элементов устройства, позволяет в одном эксперименте, кроме средней плотности, регистрировать электропроводность квазиизэнтропически сжатого газа, что повышает информативность опыта.


ЦИЛИНДРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СЖАТИЯ ГАЗОВ ДО МЕГАБАРНЫХ ДАВЛЕНИЙ
ЦИЛИНДРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СЖАТИЯ ГАЗОВ ДО МЕГАБАРНЫХ ДАВЛЕНИЙ
ЦИЛИНДРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ СЖАТИЯ ГАЗОВ ДО МЕГАБАРНЫХ ДАВЛЕНИЙ
Источник поступления информации: Роспатент

Showing 151-160 of 199 items.
13.01.2017
№217.015.8c02

Способ герметизации аварийных контейнеров

Изобретение относится к разработке эффективного способа герметизации аварийных контейнеров, обеспечивающих условия безопасности процесса и высокую надежность транспортировки и хранения аварийных контейнеров с токсичными и экологически опасными материалами. В способе герметизации аварийных...
Тип: Изобретение
Номер охранного документа: 0002604857
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c0a

Способ изготовления полимерного открытопористого материала

Изобретение относится к области получения изделий из полимерного открытопористого материала (поропласта). Детали из поропласта могут быть использованы как функциональные элементы, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция. Детали из поропласта...
Тип: Изобретение
Номер охранного документа: 0002604844
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c4a

Способ изготовления гибких шлейфов для микросборок

Изобретение относится к многопроводным гибким электрическим соединениям и может быть использовано для сборки микроэлектронных приборов. Технический результат - улучшение технологичности процесса изготовления гибких шлейфов и процесса последующего соединения элементов микросборок с...
Тип: Изобретение
Номер охранного документа: 0002604837
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.96d0

Способ получения изображения быстропротекающего процесса и система для его осуществления

Изобретение относится к области коростной теневой кинорегистрации. Способ включает формирование пучка света в направлении быстропротекающего процесса, расположенного перед экраном по направлению распространения света, при помощи лазерного источника и оптической системы, регистрацию пучка света....
Тип: Изобретение
Номер охранного документа: 0002608693
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.a2c3

Способ приготовления пластичного взрывчатого состава

Изобретение относится к технологии взрывчатых веществ, а именно пластичных взрывчатых составов, используемых в конструкциях взрывных зарядов. Способ приготовления пластичного взрывчатого состава заключается в смешивании кристаллического взрывчатого вещества (ВВ) с раствором пластичного полимера...
Тип: Изобретение
Номер охранного документа: 0002607206
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7bf

Мультипроцессорная система

Изобретение относится к области вычислительных и коммуникационных систем и может быть использовано при создании вычислительных комплексов различной производительности. Технический результат заключается в повышении отказоустойчивости и пропускной способности коммуникационной сети за счет...
Тип: Изобретение
Номер охранного документа: 0002614926
Дата охранного документа: 30.03.2017
19.01.2018
№218.016.0368

Интерактивная автоматизированная система обучения

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения содержит по крайней мере один программно-аппаратный комплекс, поддерживающий в режиме диалога автоматизированные циклы обучения и контроля знаний обучающихся, который выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002630441
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1246

Способ и устройство исследования характеристик заряда взрывчатого вещества и способ идентификации свойств взрывчатого вещества

Группа изобретений относится к области исследования материалов с помощью протонной радиографии при ударно-волновом нагружении. Способ исследования характеристик заряда взрывчатого вещества (ВВ) включает ударно-волновое нагружение элемента при подрыве исследуемого заряда ВВ, при этом, с помощью...
Тип: Изобретение
Номер охранного документа: 0002634249
Дата охранного документа: 24.10.2017
11.03.2019
№219.016.dbb6

Способ уничтожения информации с электронных носителей и взрывное режущее устройство

Способ уничтожения информации с электронных носителей и взрывное режущее устройство относятся к взрывной резке материалов и конструкций, и может быть использовано при разработке устройств и методов уничтожения электронных носителей информации для предотвращения несанкционированного доступа к...
Тип: Изобретение
Номер охранного документа: 0002424584
Дата охранного документа: 20.07.2011
11.03.2019
№219.016.dbc3

Способ и устройство заделки пробоины корпуса двухкорпусного подводного объекта

Изобретение относится к области судостроения, в частности к аварийно-спасательным средствам и способам обеспечения живучести подводного объекта (ПО), и может быть использовано для перекрытия прочного корпуса ПО при его пробоине от воздействия противолодочного оружия, например, кумулятивного...
Тип: Изобретение
Номер охранного документа: 0002470824
Дата охранного документа: 27.12.2012
Showing 151-160 of 165 items.
13.01.2017
№217.015.8c02

Способ герметизации аварийных контейнеров

Изобретение относится к разработке эффективного способа герметизации аварийных контейнеров, обеспечивающих условия безопасности процесса и высокую надежность транспортировки и хранения аварийных контейнеров с токсичными и экологически опасными материалами. В способе герметизации аварийных...
Тип: Изобретение
Номер охранного документа: 0002604857
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c0a

Способ изготовления полимерного открытопористого материала

Изобретение относится к области получения изделий из полимерного открытопористого материала (поропласта). Детали из поропласта могут быть использованы как функциональные элементы, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция. Детали из поропласта...
Тип: Изобретение
Номер охранного документа: 0002604844
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8c4a

Способ изготовления гибких шлейфов для микросборок

Изобретение относится к многопроводным гибким электрическим соединениям и может быть использовано для сборки микроэлектронных приборов. Технический результат - улучшение технологичности процесса изготовления гибких шлейфов и процесса последующего соединения элементов микросборок с...
Тип: Изобретение
Номер охранного документа: 0002604837
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.96d0

Способ получения изображения быстропротекающего процесса и система для его осуществления

Изобретение относится к области коростной теневой кинорегистрации. Способ включает формирование пучка света в направлении быстропротекающего процесса, расположенного перед экраном по направлению распространения света, при помощи лазерного источника и оптической системы, регистрацию пучка света....
Тип: Изобретение
Номер охранного документа: 0002608693
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.a2c3

Способ приготовления пластичного взрывчатого состава

Изобретение относится к технологии взрывчатых веществ, а именно пластичных взрывчатых составов, используемых в конструкциях взрывных зарядов. Способ приготовления пластичного взрывчатого состава заключается в смешивании кристаллического взрывчатого вещества (ВВ) с раствором пластичного полимера...
Тип: Изобретение
Номер охранного документа: 0002607206
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b7bf

Мультипроцессорная система

Изобретение относится к области вычислительных и коммуникационных систем и может быть использовано при создании вычислительных комплексов различной производительности. Технический результат заключается в повышении отказоустойчивости и пропускной способности коммуникационной сети за счет...
Тип: Изобретение
Номер охранного документа: 0002614926
Дата охранного документа: 30.03.2017
19.01.2018
№218.016.0368

Интерактивная автоматизированная система обучения

Изобретение относится к автоматизированным средствам обучения. Интерактивная автоматизированная система обучения содержит по крайней мере один программно-аппаратный комплекс, поддерживающий в режиме диалога автоматизированные циклы обучения и контроля знаний обучающихся, который выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002630441
Дата охранного документа: 07.09.2017
20.01.2018
№218.016.1246

Способ и устройство исследования характеристик заряда взрывчатого вещества и способ идентификации свойств взрывчатого вещества

Группа изобретений относится к области исследования материалов с помощью протонной радиографии при ударно-волновом нагружении. Способ исследования характеристик заряда взрывчатого вещества (ВВ) включает ударно-волновое нагружение элемента при подрыве исследуемого заряда ВВ, при этом, с помощью...
Тип: Изобретение
Номер охранного документа: 0002634249
Дата охранного документа: 24.10.2017
10.05.2018
№218.016.4474

Устройство формирования детонационной волны в заряде взрывчатого вещества

Устройство формирования детонационной волны в заряде взрывчатого вещества (ВВ) относится к области взрывных работ. Устройство включает инертную матрицу с детонационной разводкой, выполненной в виде сети детонационных каналов с общим входным участком, соединенным с источником инициирования, с...
Тип: Изобретение
Номер охранного документа: 0002650006
Дата охранного документа: 06.04.2018
11.06.2018
№218.016.6184

Устройство для подачи газа во внутреннюю полость многокаскадного осесимметричного устройства имплозивного типа

Изобретение относится к области исследований физики высоких плотностей энергий и термоядерных реакций при реализации высокотемпературных состояний в сжатом газе. Устройство для подачи газа во внутреннюю полость многокаскадного осесимметричного устройства имплозивного типа содержит трубопровод,...
Тип: Изобретение
Номер охранного документа: 0002657086
Дата охранного документа: 08.06.2018
+ добавить свой РИД