×
20.07.2014
216.012.de2f

УСТАНОВКА ДЛЯ ТЕПЛОФИЗИЧЕСКИХ ИСПЫТАНИЙ ОБРАЗЦА ИЗ ТОКОПРОВОДЯЩЕГО МАТЕРИАЛА ПРИ ИМПУЛЬСНОМ НАГРЕВЕ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к теплофизическим испытаниям и может быть использовано при испытаниях токопроводящих материалов (ТМ). Заявлена установка для теплофизических испытаний образца из токопроводящего материала при импульсном нагреве, содержащая дилатометрическую систему, рабочую камеру с вакуумной средой, термопары. Рабочая камера оснащена токоподводами, связанными с образцом, цанговыми зажимами для крепления образца. Дилатометрическая система установлена непосредственно на рабочей части образца. Дилатометрическая система и термопары связаны с контрольно-измерительной аппаратурой, которая, в свою очередь, связана с ПЭВМ. Дилатометрическая система состоит из датчика перемещений индуктивного коаксиального. Один токоподвод связан с образцом через гибкий проводник, а второй имеет с ним жесткую связь. Технический результат: возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ путем герметизации образцов из ТМ. 2 з.п. ф-лы, 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к теплофизическим испытаниям, а конкретно к испытаниям токопроводящих материалов (ТМ) с целью получения комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-10000 град/с) до температуры ~800°С в вакууме.

Известны дилатометры для исследования кинетики фазовых превращений в сталях и сплавах при быстром нагреве, например, емкостной дилатометр, где образец нагревается проходящим через него электрическим током [С.И. Новикова. Тепловое расширение твердых тел., М. Наука, 1974, с.79-80].

Недостатком этого устройства является невозможность определения комплекса теплофизических свойств различных токопроводящих материалов, имеется возможность только теплового расширения, а также отсутствие рабочей камеры для испытания образцов высокой токсичности, пирофорности, химической и радиационной активности.

Известен способ определения теплоемкости материала одновременно с определением его температурного расширения в вакуумной среде на образцах стержневой формы при квазистатическом нагреве с постоянной скоростью [п. RU 2439511 с приоритетом от 09.06.2010, опубликован 10.01.2012, G01К 17/00, G01N 25/20].

Недостатком известного способа является сложная организация стабильного теплового потока и его регистрация, а также малое количество определяемых характеристик (теплового расширения, удельной теплоемкости). Способ определения теплоемкости материала одновременно с определением его температурного расширения в вакуумной среде на образцах стержневой формы при квазистатическом нагреве с постоянной скоростью выбран в качестве прототипа.

Задачей, стоящей перед авторами предполагаемого изобретения, является разработка установки для теплофизических испытаний образцов из ТМ при импульсном нагреве с возможностью измерения теплового расширения на рабочей части образца, удельной теплоемкости, относительного электросопротивления в одном опыте при постоянном нарастании температуры с защитой персонала и окружающей среды от воздействия испытуемых ТМ.

Техническим результатом предлагаемого решения является возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ путем герметизации образцов из ТМ.

Технический результат достигается тем, что в установке для теплофизических испытаний образцов из ТМ при импульсном нагреве, содержащей дилатометрическую систему, рабочую камеру с вакуумной средой, термопары, согласно изобретению, рабочая камера оснащена токоподводами, связанными с образцом, цанговыми зажимами для крепления образца, дилатометрическая система установлена непосредственно на рабочей части образца, дилатометрическая система и термопары связаны с контрольно-измерительной аппаратурой, которая, в свою очередь, связана с ПЭВМ.

Дилатометрическая система состоит из датчика перемещений индуктивного коаксиального.

Один токоподвод связан с образцом через гибкий проводник, а второй имеет с ним жесткую связь.

Возможность проведения испытаний образцов ТМ при повышенных температурах достигается применением герметичной вакуумной рабочей камеры, в которой образцы ТМ закрепляются в цанговых зажимах, и пропусканием через них электрического тока посредством токоподводов. Требуемая точность определения теплового расширения достигается за счет установки дилатометрической системы непосредственно на рабочей части образца, регистрацией сигналов в цифровом виде с дилатометрической системы и термопар через контрольно-измерительную аппаратуру на ПЭВМ. Для обеспечения свободного теплового расширения образца в процессе импульсного нагрева один конец образца жестко связан с одним из токоподводов, а другой подсоединен к токоподводу через гибкий проводник. Обработка сигналов, поступающих с дилатометрической системы и термопар на ПЭВМ через контрольно-измерительную аппаратуру повышает достоверность определения характеристик испытуемых образцов.

Таким образом, заявляемое техническое решение обеспечивает возможность проведения теплофизических испытаний образов из ТМ при импульсном нагреве со скоростями ~100-1000 град/с.

На фиг.1 показан пример конкретного исполнения рабочей камеры установки для теплофизических испытаний образцов из ТМ при импульсном нагреве, где:

1 - колпак;

2 - основание;

3 - образец;

4 - цанговый зажим;

5 - термопары;

6 - датчик перемещений индуктивный коаксиальный;

7 - герметичный разъем;

8 - токоподвод;

9 - токоподвод с гибким проводником.

Рабочая камера состоит из основания 2 с токоподводом 8, токоподводом с гибким проводником 9 и колпака 1. Образец 3 верхним концом зажат в цанговом зажиме 4, жестко соединенным с токоподводом 8. На нижнем конце образца 3 закреплен цанговый зажим 4, который присоединен к токоподводу с гибким проводником 9. К поверхности образца привариваются термопары 5, в средней его части закрепляется датчик перемещений индуктивный коаксиальный 6. Для вывода сигналов в основании 2 установлен электрически изолированный герметичный разъем 7. Источником тока для разогрева образца является батарея аккумуляторов с номинальным напряжением 24 В (на фиг.1 не показана). Подача электрического импульса происходит автоматически с помощью коммутирующего устройства (на фиг.1 не показано). Скорость нагрева образца задается включенным последовательно с образцом 3 гасящим сопротивлением (на фиг.1 не показан) и может изменяться от 200 до 15000 град/с.

Эксперимент по определению комплекса теплофизических свойств состоит из предварительного и нескольких основных нагревов образца 3 с последующими охлаждениями. Предварительный нагрев используется для определения теплофизических свойств исследуемого материала при нормальной температуре. Приращение температуры при этом не превышает 25°С во избежание заметного изменения определяемых свойств. Последующие основные нагревы образца 3 производятся до требуемой температуры испытаний, при этом теплофизические свойства определяются как функции температуры и скорости нагрева. Экспериментальная информация, необходимая для определения теплофизических свойств, регистрируется как при нагреве, так и при охлаждении образца 3. При нагреве производится запись в виде функций от времени следующих параметров: сигналов датчика перемещений индуктивного коаксиального 6, измеряющего тепловое расширение; разности потенциалов на рабочей части образца 3; тока, протекающего через образец 3; термо-эдс термопар 5. При охлаждении определяется распределение температуры вдоль оси образца 3.

Тепловое расширение измеряется датчиком перемещений индуктивным коаксиальным 6. Для определения разности потенциалов на базовой длине образца 3 используются крепежные иглы датчика перемещений индуктивного коаксиального 6. Протекающий через образец 3 ток определяется через измерение падения напряжения на резисторе последовательно с образцом 3, включенным в силовую электрическую цепь (на фиг.1 не показан). Распределение температуры по длине образца 3 при его охлаждении измеряется четырьмя термопарами 5 с диаметром электродов 50 мкм. Одна из этих термопар 5 служит для измерения температуры образца 3 при его нагреве. Термопары 5 привариваются к поверхности образца 3 точечной электрической сваркой раздельным способом на определенном расстоянии друг от друга. Разметка образца 3 по шаблону и приварка термопар 5 производятся под увеличением с использованием микроскопа.

Методика расчета теплофизических характеристик

а) Удельная теплоемкость и энтальпия

Удельная теплоемкость при нормальной температуре определяется по формуле

где Q - количество тепла, полученное рабочей частью образца 3, Δt - приращение температуры, m - масса рабочей части образца 3. Для расчета Ср0 используются экспериментальные результаты предварительного нагрева образца 3, в котором как функции времени регистрируются термо-эдс термопар 5, ток I0(τ), протекающий через образец 3, и падение напряжения U0(τ) на базе L0 датчика перемещений индуктивного коаксиального 6. Тогда

где τn - время предварительного нагрева. Приращение температуры Δt определяется по термо-эдс термопар 5 в момент времени τn. С учетом (1) и (2) получим выражение для расчета удельной теплоемкости, которую, с учетом малой величины Δt, в предварительного нагреве можно считать постоянной

Масса рабочей части m определяется расчетным путем, исходя из известной массы всего образца 3, его диаметра и предположения о равномерном распределении массы по длине образца 3.

При последующих основных нагревах образца 3 удельная теплоемкость при произвольной температуре испытаний t определяется зависимостью

или

где I(t), U(t), t - мгновенные значения тока, напряжения, температуры, регистрируемые при последующих основных нагревах образца 3. Основную погрешность при определении cp(t) вносит абсолютное значение скорости нарастания температуры. В наибольшей степени эта погрешность проявляется при температурах, близких к нормальной. Исключение из расчетов абсолютного значения скорости V=dt/dτ существенно повышает точность определения cp(t). Это достигается при расчете температурной зависимости относительного изменения cp(t)/cpo

Произведение отношения cp(t)/cpo, рассчитанного по результатам последующих основных нагревах, на значение сро, полученное для этого же образца в предварительном нагреве, дает удельную теплоемкость cp(t), как функцию температуры.

Изложенную методику определения температурного изменения удельной теплоемкости целесообразно применять в случае, если имеются нарушения монотонности зависимостей температуры от времени и энтальпии от температуры, т.е. если в исследуемом температурном интервале в материале образца 3 происходят процессы, характеризующиеся некоторым тепловым эффектом (например, фазовые превращения и др.) При монотонном характере указанных зависимостей на основании экспериментальных данных находится энтальпия, которая как функция температуры определяется из выражения

После этого удельная теплоемкость определяется как производная от энтальпии по температуре cp(t)=dH(t)/dt.

б) Тепловое расширение

Для определения характеристик теплового расширения используются зависимости температуры и расширения от времени, полученные в последующих основных нагревах. Абсолютное тепловое расширение рабочей части образца 3 определяется как удлинение, регистрируемое датчиком перемещений индуктивным коаксиальным 6. Для одних и тех же моментов времени определяется температура образца 3 и удлинение его рабочей части, по которым строится дилатометрическая кривая.

в) Относительное электросопротивление

При определении относительного электросопротивления используются осциллограммы последующих основных нагревов: падение напряжения U(τ), ток I(τ), температура t(τ). Относительное электросопротивление определяется без учета изменения геометрических размеров при нагреве образца 3, что дает дополнительную погрешность ~1%. При таком допущении относительное электросопротивление представляет собой отношение сопротивления R(t) рабочей части образца 3 при температуре t к его значению при начальной температуре испытаний R(t0), т.е.

Таким образом, определяя из осциллограмм последующих основных нагревов для одного и того же момента времени напряжение и ток, по соотношению (8) рассчитывается относительное электросопротивление (температурное изменение электросопротивления) при конкретной температуре, а в конечном счете - зависимость относительного электросопротивления от температуры в исследованном диапазоне.

Колпак 1 и основание 2 образуют герметичную полость для создания вакуума, предотвращающего конвективный теплообмен с окружающей средой, а также коррозию образцов ТМ при испытании их с повышенной температурой.

Благодаря заявляемой совокупности признаков решения появляется возможность теплофизических испытаний ТМ с получением комплекса теплофизических свойств (теплового расширения, удельной теплоемкости, относительного электросопротивления, энтальпии) при импульсном нагреве (со скоростью ~100-1000 град/с) до температуры ~800°С в вакууме с одновременной защитой персонала и окружающей среды от воздействия испытуемых ТМ.

Изготовлен опытный образец установки, испытан, результаты подтвердили работоспособность установки и получение нового технического результата.


УСТАНОВКА ДЛЯ ТЕПЛОФИЗИЧЕСКИХ ИСПЫТАНИЙ ОБРАЗЦА ИЗ ТОКОПРОВОДЯЩЕГО МАТЕРИАЛА ПРИ ИМПУЛЬСНОМ НАГРЕВЕ
Источник поступления информации: Роспатент

Showing 1-10 of 67 items.
20.01.2013
№216.012.1d7e

Устройство для измерения малых перемещений или деформаций объекта

Устройство содержит источник света, состоящую из столбцов и рядов светочувствительных ячеек прямоугольную ПЗС-матрицу, соединенную с регистрирующей аппаратурой, размещенный между ними плоский затвор, частично перекрывающий световой поток от источника света на ПЗС-матрицу. Граница плоского...
Тип: Изобретение
Номер охранного документа: 0002473044
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
20.07.2013
№216.012.57d2

Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения. Устройство состоит из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит...
Тип: Изобретение
Номер охранного документа: 0002488090
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
20.02.2014
№216.012.a16f

Способ электроэрозионной обработки прецизионных сферических поверхностей

Изобретение относится к электроэрозионному формообразованию прецизионных сферических поверхностей. Электроэрозионную обработку осуществляют вращающимся электрод-инструментом, подаваемым продольно вдоль оси, пересекающейся с осью вращающейся заготовки в центре сферической поверхности, причем...
Тип: Изобретение
Номер охранного документа: 0002507042
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
27.03.2014
№216.012.aee4

Устройство для калибровки датчика измерения малых перемещений

Изобретение относится к измерительной технике, а именно к образцовым средствам измерения, предназначенным для поверки датчиков измерения малых перемещений. Сущность изобретения заключается в том, что в устройстве для калибровки датчика измерения малых перемещений, содержащем основание, стойку,...
Тип: Изобретение
Номер охранного документа: 0002510487
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.afce

Контейнер для транспортирования отработавшего ядерного топлива

Изобретение относится к контейнерам для транспортирования и временного хранения отработавшего ядерного топлива (ОЯТ) атомных электростанций (АЭС) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер содержит металлический корпус, включающий комингс с закрепленными на нем днищем и...
Тип: Изобретение
Номер охранного документа: 0002510721
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b5fa

Способ получения раствора ферроцианида лития

Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu, Ni, Co, Zn, Fe и др.) общей формулы Ме[Fe(CN)]. Способ получения раствора ферроцианида лития заключается в использовании сильнокислого...
Тип: Изобретение
Номер охранного документа: 0002512310
Дата охранного документа: 10.04.2014
Showing 1-10 of 70 items.
20.01.2013
№216.012.1d7e

Устройство для измерения малых перемещений или деформаций объекта

Устройство содержит источник света, состоящую из столбцов и рядов светочувствительных ячеек прямоугольную ПЗС-матрицу, соединенную с регистрирующей аппаратурой, размещенный между ними плоский затвор, частично перекрывающий световой поток от источника света на ПЗС-матрицу. Граница плоского...
Тип: Изобретение
Номер охранного документа: 0002473044
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.20c6

Устройство для определения температурного расширения материала образца

Изобретение относится к области теплофизики и может быть использовано при определении коэффициента термического расширения твердых тел. Заявлено устройство для определения термического расширения твердых тел, содержащее трубку из материала с низким коэффициентом термического расширения и...
Тип: Изобретение
Номер охранного документа: 0002473891
Дата охранного документа: 27.01.2013
27.03.2013
№216.012.3177

Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей

Изобретение относится к методам физико-химического анализа и может быть использовано для масс-спектрометрического количественного определения состава газовых сред, содержащих изотопы водорода и гелия. Способ проведения градуировки масс-спектрометра для количественного анализа газовых смесей...
Тип: Изобретение
Номер охранного документа: 0002478201
Дата охранного документа: 27.03.2013
20.07.2013
№216.012.57d2

Устройство для испытания на прочность при сложнонапряженном состоянии тонкостенных трубчатых образцов или отрезков труб

Изобретение относится к испытаниям на прочность при сложнонапряженном деформированном состоянии тонкостенных трубчатых образцов, в том числе отрезков труб постоянного сечения. Устройство состоит из распорного приспособления, устанавливаемого внутри образца по его краю, в состав которого входит...
Тип: Изобретение
Номер охранного документа: 0002488090
Дата охранного документа: 20.07.2013
27.10.2013
№216.012.7aac

Боевой элемент кассетного осколочного боеприпаса

Изобретение относится к боеприпасам, в частности к боевым элементам кассетных осколочных боеприпасов. Боевой элемент кассетного осколочного боеприпаса включает корпус, заряд взрывчатого вещества, систему инициирования и металлическую облицовку, предназначенную для формирования из нее...
Тип: Изобретение
Номер охранного документа: 0002497066
Дата охранного документа: 27.10.2013
20.02.2014
№216.012.a16f

Способ электроэрозионной обработки прецизионных сферических поверхностей

Изобретение относится к электроэрозионному формообразованию прецизионных сферических поверхностей. Электроэрозионную обработку осуществляют вращающимся электрод-инструментом, подаваемым продольно вдоль оси, пересекающейся с осью вращающейся заготовки в центре сферической поверхности, причем...
Тип: Изобретение
Номер охранного документа: 0002507042
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a348

Установка для определения упругих констант делящихся материалов при повышенных температурах

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами...
Тип: Изобретение
Номер охранного документа: 0002507515
Дата охранного документа: 20.02.2014
27.03.2014
№216.012.aee4

Устройство для калибровки датчика измерения малых перемещений

Изобретение относится к измерительной технике, а именно к образцовым средствам измерения, предназначенным для поверки датчиков измерения малых перемещений. Сущность изобретения заключается в том, что в устройстве для калибровки датчика измерения малых перемещений, содержащем основание, стойку,...
Тип: Изобретение
Номер охранного документа: 0002510487
Дата охранного документа: 27.03.2014
10.04.2014
№216.012.afce

Контейнер для транспортирования отработавшего ядерного топлива

Изобретение относится к контейнерам для транспортирования и временного хранения отработавшего ядерного топлива (ОЯТ) атомных электростанций (АЭС) в виде отработавших тепловыделяющих сборок (ОТВС). Контейнер содержит металлический корпус, включающий комингс с закрепленными на нем днищем и...
Тип: Изобретение
Номер охранного документа: 0002510721
Дата охранного документа: 10.04.2014
10.04.2014
№216.012.b5fa

Способ получения раствора ферроцианида лития

Изобретение может быть использовано для получения растворов ферроцианида лития, который применяется в синтезе нормальных ферроцианидов переходных металлов (Cu, Ni, Co, Zn, Fe и др.) общей формулы Ме[Fe(CN)]. Способ получения раствора ферроцианида лития заключается в использовании сильнокислого...
Тип: Изобретение
Номер охранного документа: 0002512310
Дата охранного документа: 10.04.2014
+ добавить свой РИД